stem_rs/
events.rs

1//! Event types and handling for Tor control protocol async notifications.
2//!
3//! This module provides comprehensive event types for all Tor control protocol
4//! asynchronous events, as described in section 4.1 of the
5//! [control-spec](https://spec.torproject.org/control-spec/replies.html#asynchronous-events).
6//!
7//! # Overview
8//!
9//! Tor emits asynchronous events to notify controllers about state changes,
10//! bandwidth usage, circuit activity, and other important occurrences. Events
11//! are received after subscribing via the `SETEVENTS` command through the
12//! [`Controller`](crate::Controller).
13//!
14//! # Event Categories
15//!
16//! Events are organized into several categories:
17//!
18//! - **Bandwidth Events**: [`BandwidthEvent`], [`CircuitBandwidthEvent`],
19//!   [`ConnectionBandwidthEvent`] - Track data transfer rates
20//! - **Circuit Events**: [`CircuitEvent`] - Monitor circuit lifecycle
21//! - **Stream Events**: [`StreamEvent`] - Track stream connections
22//! - **Connection Events**: [`OrConnEvent`] - Monitor OR connections
23//! - **Log Events**: [`LogEvent`] - Receive Tor log messages
24//! - **Status Events**: [`StatusEvent`] - Bootstrap progress and status changes
25//! - **Guard Events**: [`GuardEvent`] - Guard relay changes
26//! - **Hidden Service Events**: [`HsDescEvent`] - Hidden service descriptor activity
27//! - **Configuration Events**: [`ConfChangedEvent`] - Configuration changes
28//! - **Network Events**: [`NetworkLivenessEvent`] - Network connectivity status
29//!
30//! # Event Subscription
31//!
32//! To receive events, subscribe using the controller's `set_events` method:
33//!
34//! ```rust,no_run
35//! use stem_rs::{controller::Controller, EventType};
36//!
37//! # async fn example() -> Result<(), stem_rs::Error> {
38//! let mut controller = Controller::from_port("127.0.0.1:9051".parse()?).await?;
39//! controller.authenticate(None).await?;
40//!
41//! // Subscribe to bandwidth and circuit events
42//! controller.set_events(&[EventType::Bw, EventType::Circ]).await?;
43//!
44//! // Events will now be delivered asynchronously
45//! # Ok(())
46//! # }
47//! ```
48//!
49//! # Event Parsing
50//!
51//! Raw event data from Tor is parsed into strongly-typed event structs using
52//! [`ParsedEvent::parse`]. Each event type provides access to its specific
53//! fields while also preserving the raw content for debugging.
54//!
55//! # Thread Safety
56//!
57//! All event types implement [`Send`] and [`Sync`], allowing them to be safely
58//! shared across threads. The [`Event`] trait requires these bounds.
59//!
60//! # See Also
61//!
62//! - [`crate::controller`] - High-level controller API for event subscription
63//! - [`crate::protocol`] - Low-level protocol message handling
64
65use std::collections::HashMap;
66use std::time::Instant;
67
68use chrono::{DateTime, Local, Utc};
69
70use crate::controller::{CircuitId, StreamId};
71use crate::protocol::ControlLine;
72use crate::{
73    CircBuildFlag, CircClosureReason, CircPurpose, CircStatus, ConnectionType, Error, EventType,
74    GuardStatus, GuardType, HiddenServiceState, HsAuth, HsDescAction, HsDescReason,
75    OrClosureReason, OrStatus, Runlevel, Signal, StatusType, StreamClosureReason, StreamPurpose,
76    StreamSource, StreamStatus, TimeoutSetType,
77};
78
79/// Trait implemented by all Tor control protocol events.
80///
81/// This trait provides a common interface for accessing event metadata
82/// regardless of the specific event type. All event types must be thread-safe
83/// (`Send + Sync`) to support concurrent event handling.
84///
85/// # Implementors
86///
87/// All event structs in this module implement this trait:
88/// - [`BandwidthEvent`], [`LogEvent`], [`CircuitEvent`], [`StreamEvent`]
89/// - [`OrConnEvent`], [`AddrMapEvent`], [`BuildTimeoutSetEvent`]
90/// - [`GuardEvent`], [`NewDescEvent`], [`SignalEvent`], [`StatusEvent`]
91/// - [`ConfChangedEvent`], [`NetworkLivenessEvent`], [`CircuitBandwidthEvent`]
92/// - [`ConnectionBandwidthEvent`], [`HsDescEvent`]
93///
94/// # Example
95///
96/// ```rust,ignore
97/// fn handle_event(event: &dyn Event) {
98///     println!("Received {:?} event at {:?}", event.event_type(), event.arrived_at());
99///     println!("Raw content: {}", event.raw_content());
100/// }
101/// ```
102pub trait Event: Send + Sync {
103    /// Returns the type of this event.
104    ///
105    /// This corresponds to the event keyword used in `SETEVENTS` commands.
106    fn event_type(&self) -> EventType;
107
108    /// Returns the raw, unparsed content of the event.
109    ///
110    /// Useful for debugging or when additional parsing is needed beyond
111    /// what the typed event provides.
112    fn raw_content(&self) -> &str;
113
114    /// Returns the instant when this event was received.
115    ///
116    /// This is the local time when the event was parsed, not when Tor
117    /// generated it. Useful for measuring event latency or ordering events.
118    fn arrived_at(&self) -> Instant;
119}
120
121/// Event emitted every second with the bytes sent and received by Tor.
122///
123/// The BW event is one of the most commonly used events for monitoring
124/// Tor's bandwidth usage. It provides a snapshot of data transfer rates
125/// over the last second.
126///
127/// # Event Format
128///
129/// The raw event format is: `BW <bytes_read> <bytes_written>`
130///
131/// # Use Cases
132///
133/// - Monitoring bandwidth consumption
134/// - Building bandwidth graphs
135/// - Detecting network activity
136/// - Rate limiting applications
137///
138/// # Example
139///
140/// ```rust,ignore
141/// use stem_rs::events::BandwidthEvent;
142///
143/// fn handle_bandwidth(event: &BandwidthEvent) {
144///     let read_kbps = event.read as f64 / 1024.0;
145///     let written_kbps = event.written as f64 / 1024.0;
146///     println!("Bandwidth: {:.2} KB/s read, {:.2} KB/s written", read_kbps, written_kbps);
147/// }
148/// ```
149///
150/// # See Also
151///
152/// - [`CircuitBandwidthEvent`] - Per-circuit bandwidth tracking
153/// - [`ConnectionBandwidthEvent`] - Per-connection bandwidth tracking
154#[derive(Debug, Clone)]
155pub struct BandwidthEvent {
156    /// Bytes received by Tor in the last second.
157    pub read: u64,
158    /// Bytes sent by Tor in the last second.
159    pub written: u64,
160    raw_content: String,
161    arrived_at: Instant,
162}
163
164impl Event for BandwidthEvent {
165    fn event_type(&self) -> EventType {
166        EventType::Bw
167    }
168    fn raw_content(&self) -> &str {
169        &self.raw_content
170    }
171    fn arrived_at(&self) -> Instant {
172        self.arrived_at
173    }
174}
175
176impl BandwidthEvent {
177    /// Parses a bandwidth event from raw control protocol content.
178    ///
179    /// # Arguments
180    ///
181    /// * `content` - The event content after the event type, e.g., "15 25"
182    ///
183    /// # Errors
184    ///
185    /// Returns [`Error::Protocol`] if:
186    /// - The content is missing required values
187    /// - The read or written values are not valid integers
188    ///
189    /// # Example
190    ///
191    /// ```rust,ignore
192    /// let event = BandwidthEvent::parse("1024 2048")?;
193    /// assert_eq!(event.read, 1024);
194    /// assert_eq!(event.written, 2048);
195    /// ```
196    pub fn parse(content: &str) -> Result<Self, Error> {
197        let mut line = ControlLine::new(content);
198        let read_str = line.pop(false, false)?;
199        let written_str = line.pop(false, false)?;
200
201        let read: u64 = read_str.parse().map_err(|_| {
202            Error::Protocol(format!("invalid read value in BW event: {}", read_str))
203        })?;
204        let written: u64 = written_str.parse().map_err(|_| {
205            Error::Protocol(format!(
206                "invalid written value in BW event: {}",
207                written_str
208            ))
209        })?;
210
211        Ok(Self {
212            read,
213            written,
214            raw_content: content.to_string(),
215            arrived_at: Instant::now(),
216        })
217    }
218}
219
220/// Tor logging event for receiving log messages from the Tor process.
221///
222/// These are the most visible kind of event since, by default, Tor logs
223/// at the NOTICE [`Runlevel`] to stdout. Log events allow controllers to
224/// receive and process Tor's log output programmatically.
225///
226/// # Runlevels
227///
228/// Log events are categorized by severity:
229/// - [`Runlevel::Debug`] - Verbose debugging information
230/// - [`Runlevel::Info`] - Informational messages
231/// - [`Runlevel::Notice`] - Normal operational messages (default)
232/// - [`Runlevel::Warn`] - Warning conditions
233/// - [`Runlevel::Err`] - Error conditions
234///
235/// # Event Types
236///
237/// Each runlevel corresponds to a separate event type:
238/// - `DEBUG`, `INFO`, `NOTICE`, `WARN`, `ERR`
239///
240/// # Example
241///
242/// ```rust,ignore
243/// use stem_rs::{EventType, Runlevel};
244/// use stem_rs::events::LogEvent;
245///
246/// fn handle_log(event: &LogEvent) {
247///     match event.runlevel {
248///         Runlevel::Err | Runlevel::Warn => {
249///             eprintln!("[{}] {}", event.runlevel, event.message);
250///         }
251///         _ => {
252///             println!("[{}] {}", event.runlevel, event.message);
253///         }
254///     }
255/// }
256/// ```
257///
258/// # See Also
259///
260/// - [`Runlevel`] - Log severity levels
261/// - [`StatusEvent`] - Structured status messages
262#[derive(Debug, Clone)]
263pub struct LogEvent {
264    /// Severity level of the log message.
265    pub runlevel: Runlevel,
266    /// The log message content.
267    pub message: String,
268    raw_content: String,
269    arrived_at: Instant,
270}
271
272impl Event for LogEvent {
273    fn event_type(&self) -> EventType {
274        match self.runlevel {
275            Runlevel::Debug => EventType::Debug,
276            Runlevel::Info => EventType::Info,
277            Runlevel::Notice => EventType::Notice,
278            Runlevel::Warn => EventType::Warn,
279            Runlevel::Err => EventType::Err,
280        }
281    }
282    fn raw_content(&self) -> &str {
283        &self.raw_content
284    }
285    fn arrived_at(&self) -> Instant {
286        self.arrived_at
287    }
288}
289
290impl LogEvent {
291    /// Parses a log event from raw control protocol content.
292    ///
293    /// # Arguments
294    ///
295    /// * `runlevel` - The severity level of the log message
296    /// * `message` - The log message content
297    ///
298    /// # Errors
299    ///
300    /// This method currently does not return errors but returns `Result`
301    /// for API consistency with other event parsers.
302    pub fn parse(runlevel: Runlevel, message: &str) -> Result<Self, Error> {
303        Ok(Self {
304            runlevel,
305            message: message.to_string(),
306            raw_content: message.to_string(),
307            arrived_at: Instant::now(),
308        })
309    }
310}
311
312/// Event indicating that a circuit's status has changed.
313///
314/// Circuit events are fundamental to understanding Tor's operation. They
315/// track the lifecycle of circuits from creation through closure, including
316/// the relays involved and the purpose of each circuit.
317///
318/// # Circuit Lifecycle
319///
320/// Circuits progress through these states:
321/// 1. [`CircStatus::Launched`] - Circuit creation initiated
322/// 2. [`CircStatus::Extended`] - Circuit extended to additional hops
323/// 3. [`CircStatus::Built`] - Circuit fully constructed and ready
324/// 4. [`CircStatus::Failed`] or [`CircStatus::Closed`] - Circuit terminated
325///
326/// # Path Information
327///
328/// The `path` field contains the relays in the circuit as `(fingerprint, nickname)`
329/// tuples. The fingerprint is always present; the nickname may be `None` if
330/// the `VERBOSE_NAMES` feature isn't enabled (on by default since Tor 0.2.2.1).
331///
332/// # Hidden Service Circuits
333///
334/// For hidden service circuits, additional fields provide context:
335/// - `hs_state` - Current state in the hidden service protocol
336/// - `rend_query` - The rendezvous point address
337/// - `purpose` - Indicates the circuit's role (intro, rend, etc.)
338///
339/// # Example
340///
341/// ```rust,ignore
342/// use stem_rs::events::CircuitEvent;
343/// use stem_rs::CircStatus;
344///
345/// fn handle_circuit(event: &CircuitEvent) {
346///     match event.status {
347///         CircStatus::Built => {
348///             println!("Circuit {} built with {} hops", event.id, event.path.len());
349///             for (fingerprint, nickname) in &event.path {
350///                 println!("  - {} ({:?})", fingerprint, nickname);
351///             }
352///         }
353///         CircStatus::Failed => {
354///             println!("Circuit {} failed: {:?}", event.id, event.reason);
355///         }
356///         _ => {}
357///     }
358/// }
359/// ```
360///
361/// # See Also
362///
363/// - [`CircStatus`] - Circuit status values
364/// - [`CircPurpose`] - Circuit purpose types
365/// - [`CircClosureReason`] - Closure reasons
366#[derive(Debug, Clone)]
367pub struct CircuitEvent {
368    /// Unique identifier for this circuit.
369    pub id: CircuitId,
370    /// Current status of the circuit.
371    pub status: CircStatus,
372    /// Relays in the circuit path as `(fingerprint, nickname)` tuples.
373    pub path: Vec<(String, Option<String>)>,
374    /// Flags governing how the circuit was built.
375    pub build_flags: Option<Vec<CircBuildFlag>>,
376    /// Purpose that the circuit is intended for.
377    pub purpose: Option<CircPurpose>,
378    /// Hidden service state if this is an HS circuit.
379    pub hs_state: Option<HiddenServiceState>,
380    /// Rendezvous query if this is a hidden service circuit.
381    pub rend_query: Option<String>,
382    /// Time when the circuit was created or cannibalized.
383    pub created: Option<DateTime<Utc>>,
384    /// Reason for circuit closure (local).
385    pub reason: Option<CircClosureReason>,
386    /// Reason for circuit closure (from remote side).
387    pub remote_reason: Option<CircClosureReason>,
388    /// SOCKS username for stream isolation.
389    pub socks_username: Option<String>,
390    /// SOCKS password for stream isolation.
391    pub socks_password: Option<String>,
392    raw_content: String,
393    arrived_at: Instant,
394}
395
396impl Event for CircuitEvent {
397    fn event_type(&self) -> EventType {
398        EventType::Circ
399    }
400    fn raw_content(&self) -> &str {
401        &self.raw_content
402    }
403    fn arrived_at(&self) -> Instant {
404        self.arrived_at
405    }
406}
407
408impl CircuitEvent {
409    /// Parses a circuit event from raw control protocol content.
410    ///
411    /// # Arguments
412    ///
413    /// * `content` - The event content after the event type
414    ///
415    /// # Event Format
416    ///
417    /// ```text
418    /// CircuitID CircStatus [Path] [BUILD_FLAGS=...] [PURPOSE=...] [HS_STATE=...]
419    /// [REND_QUERY=...] [TIME_CREATED=...] [REASON=...] [REMOTE_REASON=...]
420    /// [SOCKS_USERNAME="..."] [SOCKS_PASSWORD="..."]
421    /// ```
422    ///
423    /// # Errors
424    ///
425    /// Returns [`Error::Protocol`] if:
426    /// - The circuit ID or status is missing
427    /// - The status is not a recognized value
428    pub fn parse(content: &str) -> Result<Self, Error> {
429        let mut line = ControlLine::new(content);
430        let id_str = line.pop(false, false)?;
431        let status_str = line.pop(false, false)?;
432        let status = parse_circ_status(&status_str)?;
433
434        let mut path = Vec::new();
435        let mut build_flags = None;
436        let mut purpose = None;
437        let mut hs_state = None;
438        let mut rend_query = None;
439        let mut created = None;
440        let mut reason = None;
441        let mut remote_reason = None;
442        let mut socks_username = None;
443        let mut socks_password = None;
444
445        while !line.is_empty() {
446            if line.is_next_mapping(Some("BUILD_FLAGS"), false) {
447                let (_, flags_str) = line.pop_mapping(false, false)?;
448                build_flags = Some(parse_build_flags(&flags_str));
449            } else if line.is_next_mapping(Some("PURPOSE"), false) {
450                let (_, p) = line.pop_mapping(false, false)?;
451                purpose = parse_circ_purpose(&p).ok();
452            } else if line.is_next_mapping(Some("HS_STATE"), false) {
453                let (_, s) = line.pop_mapping(false, false)?;
454                hs_state = parse_hs_state(&s).ok();
455            } else if line.is_next_mapping(Some("REND_QUERY"), false) {
456                let (_, q) = line.pop_mapping(false, false)?;
457                rend_query = Some(q);
458            } else if line.is_next_mapping(Some("TIME_CREATED"), false) {
459                let (_, t) = line.pop_mapping(false, false)?;
460                created = parse_iso_timestamp(&t).ok();
461            } else if line.is_next_mapping(Some("REASON"), false) {
462                let (_, r) = line.pop_mapping(false, false)?;
463                reason = parse_circ_closure_reason(&r).ok();
464            } else if line.is_next_mapping(Some("REMOTE_REASON"), false) {
465                let (_, r) = line.pop_mapping(false, false)?;
466                remote_reason = parse_circ_closure_reason(&r).ok();
467            } else if line.is_next_mapping(Some("SOCKS_USERNAME"), true) {
468                let (_, u) = line.pop_mapping(true, true)?;
469                socks_username = Some(u);
470            } else if line.is_next_mapping(Some("SOCKS_PASSWORD"), true) {
471                let (_, p) = line.pop_mapping(true, true)?;
472                socks_password = Some(p);
473            } else {
474                let token = line.pop(false, false)?;
475                if token.starts_with('$') || token.contains('~') || token.contains(',') {
476                    path = parse_circuit_path(&token);
477                }
478            }
479        }
480
481        Ok(Self {
482            id: CircuitId::new(id_str),
483            status,
484            path,
485            build_flags,
486            purpose,
487            hs_state,
488            rend_query,
489            created,
490            reason,
491            remote_reason,
492            socks_username,
493            socks_password,
494            raw_content: content.to_string(),
495            arrived_at: Instant::now(),
496        })
497    }
498}
499
500/// Event indicating that a stream's status has changed.
501///
502/// Stream events track the lifecycle of TCP connections made through Tor.
503/// Each stream is associated with a circuit and connects to a specific
504/// target host and port.
505///
506/// # Stream Lifecycle
507///
508/// Streams progress through these states:
509/// 1. [`StreamStatus::New`] - New stream request received
510/// 2. [`StreamStatus::SentConnect`] - CONNECT sent to exit relay
511/// 3. [`StreamStatus::Remap`] - Address remapped (e.g., DNS resolution)
512/// 4. [`StreamStatus::Succeeded`] - Connection established
513/// 5. [`StreamStatus::Closed`] or [`StreamStatus::Failed`] - Stream terminated
514///
515/// # Circuit Association
516///
517/// The `circuit_id` field indicates which circuit carries this stream.
518/// A value of `None` (circuit ID "0") means the stream is not yet
519/// attached to a circuit.
520///
521/// # Example
522///
523/// ```rust,ignore
524/// use stem_rs::events::StreamEvent;
525/// use stem_rs::StreamStatus;
526///
527/// fn handle_stream(event: &StreamEvent) {
528///     match event.status {
529///         StreamStatus::New => {
530///             println!("New stream {} to {}:{}",
531///                 event.id, event.target_host, event.target_port);
532///         }
533///         StreamStatus::Succeeded => {
534///             println!("Stream {} connected via circuit {:?}",
535///                 event.id, event.circuit_id);
536///         }
537///         StreamStatus::Closed | StreamStatus::Failed => {
538///             println!("Stream {} ended: {:?}", event.id, event.reason);
539///         }
540///         _ => {}
541///     }
542/// }
543/// ```
544///
545/// # See Also
546///
547/// - [`StreamStatus`] - Stream status values
548/// - [`StreamPurpose`] - Stream purpose types
549/// - [`StreamClosureReason`] - Closure reasons
550#[derive(Debug, Clone)]
551pub struct StreamEvent {
552    /// Unique identifier for this stream.
553    pub id: StreamId,
554    /// Current status of the stream.
555    pub status: StreamStatus,
556    /// Circuit carrying this stream, or `None` if unattached.
557    pub circuit_id: Option<CircuitId>,
558    /// Target hostname or IP address.
559    pub target_host: String,
560    /// Target port number.
561    pub target_port: u16,
562    /// Reason for stream closure (local).
563    pub reason: Option<StreamClosureReason>,
564    /// Reason for stream closure (from remote side).
565    pub remote_reason: Option<StreamClosureReason>,
566    /// Source of address resolution (cache or exit).
567    pub source: Option<StreamSource>,
568    /// Source address of the client connection.
569    pub source_addr: Option<String>,
570    /// Purpose of this stream.
571    pub purpose: Option<StreamPurpose>,
572    raw_content: String,
573    arrived_at: Instant,
574}
575
576impl Event for StreamEvent {
577    fn event_type(&self) -> EventType {
578        EventType::Stream
579    }
580    fn raw_content(&self) -> &str {
581        &self.raw_content
582    }
583    fn arrived_at(&self) -> Instant {
584        self.arrived_at
585    }
586}
587
588impl StreamEvent {
589    /// Parses a stream event from raw control protocol content.
590    ///
591    /// # Arguments
592    ///
593    /// * `content` - The event content after the event type
594    ///
595    /// # Event Format
596    ///
597    /// ```text
598    /// StreamID StreamStatus CircuitID Target [REASON=...] [REMOTE_REASON=...]
599    /// [SOURCE=...] [SOURCE_ADDR=...] [PURPOSE=...]
600    /// ```
601    ///
602    /// # Errors
603    ///
604    /// Returns [`Error::Protocol`] if:
605    /// - Required fields are missing
606    /// - The status is not a recognized value
607    /// - The target format is invalid
608    pub fn parse(content: &str) -> Result<Self, Error> {
609        let mut line = ControlLine::new(content);
610        let id_str = line.pop(false, false)?;
611        let status_str = line.pop(false, false)?;
612        let circuit_id_str = line.pop(false, false)?;
613        let target = line.pop(false, false)?;
614
615        let status = parse_stream_status(&status_str)?;
616        let circuit_id = if circuit_id_str == "0" {
617            None
618        } else {
619            Some(CircuitId::new(circuit_id_str))
620        };
621        let (target_host, target_port) = parse_target(&target)?;
622
623        let mut reason = None;
624        let mut remote_reason = None;
625        let mut source = None;
626        let mut source_addr = None;
627        let mut purpose = None;
628
629        while !line.is_empty() {
630            if line.is_next_mapping(Some("REASON"), false) {
631                let (_, r) = line.pop_mapping(false, false)?;
632                reason = parse_stream_closure_reason(&r).ok();
633            } else if line.is_next_mapping(Some("REMOTE_REASON"), false) {
634                let (_, r) = line.pop_mapping(false, false)?;
635                remote_reason = parse_stream_closure_reason(&r).ok();
636            } else if line.is_next_mapping(Some("SOURCE"), false) {
637                let (_, s) = line.pop_mapping(false, false)?;
638                source = parse_stream_source(&s).ok();
639            } else if line.is_next_mapping(Some("SOURCE_ADDR"), false) {
640                let (_, a) = line.pop_mapping(false, false)?;
641                source_addr = Some(a);
642            } else if line.is_next_mapping(Some("PURPOSE"), false) {
643                let (_, p) = line.pop_mapping(false, false)?;
644                purpose = parse_stream_purpose(&p).ok();
645            } else {
646                let _ = line.pop(false, false)?;
647            }
648        }
649
650        Ok(Self {
651            id: StreamId::new(id_str),
652            status,
653            circuit_id,
654            target_host,
655            target_port,
656            reason,
657            remote_reason,
658            source,
659            source_addr,
660            purpose,
661            raw_content: content.to_string(),
662            arrived_at: Instant::now(),
663        })
664    }
665}
666
667/// Event indicating that an OR (Onion Router) connection status has changed.
668///
669/// OR connection events track the status of connections between Tor relays.
670/// These are the TLS connections that carry circuit traffic between nodes
671/// in the Tor network.
672///
673/// # Connection Lifecycle
674///
675/// OR connections progress through these states:
676/// 1. [`OrStatus::New`] - Connection initiated
677/// 2. [`OrStatus::Launched`] - Connection attempt in progress
678/// 3. [`OrStatus::Connected`] - TLS handshake completed
679/// 4. [`OrStatus::Failed`] or [`OrStatus::Closed`] - Connection terminated
680///
681/// # Example
682///
683/// ```rust,ignore
684/// use stem_rs::events::OrConnEvent;
685/// use stem_rs::OrStatus;
686///
687/// fn handle_orconn(event: &OrConnEvent) {
688///     match event.status {
689///         OrStatus::Connected => {
690///             println!("Connected to relay: {}", event.target);
691///         }
692///         OrStatus::Failed | OrStatus::Closed => {
693///             println!("Connection to {} ended: {:?}", event.target, event.reason);
694///         }
695///         _ => {}
696///     }
697/// }
698/// ```
699///
700/// # See Also
701///
702/// - [`OrStatus`] - OR connection status values
703/// - [`OrClosureReason`] - Closure reasons
704#[derive(Debug, Clone)]
705pub struct OrConnEvent {
706    /// Connection identifier (may be `None` for older Tor versions).
707    pub id: Option<String>,
708    /// Current status of the OR connection.
709    pub status: OrStatus,
710    /// Target relay address (IP:port or fingerprint).
711    pub target: String,
712    /// Reason for connection closure.
713    pub reason: Option<OrClosureReason>,
714    /// Number of circuits using this connection.
715    pub num_circuits: Option<u32>,
716    raw_content: String,
717    arrived_at: Instant,
718}
719
720impl Event for OrConnEvent {
721    fn event_type(&self) -> EventType {
722        EventType::OrConn
723    }
724    fn raw_content(&self) -> &str {
725        &self.raw_content
726    }
727    fn arrived_at(&self) -> Instant {
728        self.arrived_at
729    }
730}
731
732impl OrConnEvent {
733    /// Parses an OR connection event from raw control protocol content.
734    ///
735    /// # Arguments
736    ///
737    /// * `content` - The event content after the event type
738    ///
739    /// # Event Format
740    ///
741    /// ```text
742    /// Target Status [REASON=...] [NCIRCS=...] [ID=...]
743    /// ```
744    ///
745    /// # Errors
746    ///
747    /// Returns [`Error::Protocol`] if:
748    /// - Required fields are missing
749    /// - The status is not a recognized value
750    pub fn parse(content: &str) -> Result<Self, Error> {
751        let mut line = ControlLine::new(content);
752        let target = line.pop(false, false)?;
753        let status_str = line.pop(false, false)?;
754        let status = parse_or_status(&status_str)?;
755
756        let mut id = None;
757        let mut reason = None;
758        let mut num_circuits = None;
759
760        while !line.is_empty() {
761            if line.is_next_mapping(Some("REASON"), false) {
762                let (_, r) = line.pop_mapping(false, false)?;
763                reason = parse_or_closure_reason(&r).ok();
764            } else if line.is_next_mapping(Some("NCIRCS"), false) {
765                let (_, n) = line.pop_mapping(false, false)?;
766                num_circuits = n.parse().ok();
767            } else if line.is_next_mapping(Some("ID"), false) {
768                let (_, i) = line.pop_mapping(false, false)?;
769                id = Some(i);
770            } else {
771                let _ = line.pop(false, false)?;
772            }
773        }
774
775        Ok(Self {
776            id,
777            status,
778            target,
779            reason,
780            num_circuits,
781            raw_content: content.to_string(),
782            arrived_at: Instant::now(),
783        })
784    }
785}
786
787/// Event indicating a new address mapping has been created.
788///
789/// Address map events are emitted when Tor creates a mapping between
790/// a hostname and its resolved address. This can occur due to DNS
791/// resolution, `MAPADDRESS` commands, or `TrackHostExits` configuration.
792///
793/// # Expiration
794///
795/// Address mappings have an expiration time after which they are no longer
796/// valid. The `expiry` field contains the local time, while `utc_expiry`
797/// contains the UTC time (if available).
798///
799/// # Caching
800///
801/// The `cached` field indicates whether the mapping will be kept until
802/// expiration (`true`) or may be evicted earlier (`false`).
803///
804/// # Error Mappings
805///
806/// When DNS resolution fails, `destination` will be `None` and the `error`
807/// field will contain the error code.
808///
809/// # Example
810///
811/// ```rust,ignore
812/// use stem_rs::events::AddrMapEvent;
813///
814/// fn handle_addrmap(event: &AddrMapEvent) {
815///     match &event.destination {
816///         Some(dest) => {
817///             println!("{} -> {} (expires: {:?})",
818///                 event.hostname, dest, event.expiry);
819///         }
820///         None => {
821///             println!("Resolution failed for {}: {:?}",
822///                 event.hostname, event.error);
823///         }
824///     }
825/// }
826/// ```
827#[derive(Debug, Clone)]
828pub struct AddrMapEvent {
829    /// The hostname being resolved.
830    pub hostname: String,
831    /// The resolved address, or `None` if resolution failed.
832    pub destination: Option<String>,
833    /// Expiration time in local time.
834    pub expiry: Option<DateTime<Local>>,
835    /// Error code if resolution failed.
836    pub error: Option<String>,
837    /// Expiration time in UTC.
838    pub utc_expiry: Option<DateTime<Utc>>,
839    /// Whether the mapping is cached until expiration.
840    pub cached: Option<bool>,
841    raw_content: String,
842    arrived_at: Instant,
843}
844
845impl Event for AddrMapEvent {
846    fn event_type(&self) -> EventType {
847        EventType::AddrMap
848    }
849    fn raw_content(&self) -> &str {
850        &self.raw_content
851    }
852    fn arrived_at(&self) -> Instant {
853        self.arrived_at
854    }
855}
856
857impl AddrMapEvent {
858    /// Parses an address map event from raw control protocol content.
859    ///
860    /// # Arguments
861    ///
862    /// * `content` - The event content after the event type
863    ///
864    /// # Event Format
865    ///
866    /// ```text
867    /// Hostname Destination Expiry [error=...] [EXPIRES="..."] [CACHED=YES|NO]
868    /// ```
869    ///
870    /// # Errors
871    ///
872    /// Returns [`Error::Protocol`] if required fields are missing.
873    pub fn parse(content: &str) -> Result<Self, Error> {
874        let mut line = ControlLine::new(content);
875        let hostname = line.pop(false, false)?;
876        let dest_str = line.pop(false, false)?;
877        let destination = if dest_str == "<error>" {
878            None
879        } else {
880            Some(dest_str)
881        };
882
883        let expiry_str = if line.is_next_quoted() {
884            Some(line.pop(true, false)?)
885        } else {
886            let token = line.pop(false, false)?;
887            if token == "NEVER" {
888                None
889            } else {
890                Some(token)
891            }
892        };
893
894        let expiry = expiry_str.and_then(|s| parse_local_timestamp(&s).ok());
895
896        let mut error = None;
897        let mut utc_expiry = None;
898        let mut cached = None;
899
900        while !line.is_empty() {
901            if line.is_next_mapping(Some("error"), false) {
902                let (_, e) = line.pop_mapping(false, false)?;
903                error = Some(e);
904            } else if line.is_next_mapping(Some("EXPIRES"), true) {
905                let (_, e) = line.pop_mapping(true, false)?;
906                utc_expiry = parse_utc_timestamp(&e).ok();
907            } else if line.is_next_mapping(Some("CACHED"), true) {
908                let (_, c) = line.pop_mapping(true, false)?;
909                cached = match c.as_str() {
910                    "YES" => Some(true),
911                    "NO" => Some(false),
912                    _ => None,
913                };
914            } else {
915                let _ = line.pop(false, false)?;
916            }
917        }
918
919        Ok(Self {
920            hostname,
921            destination,
922            expiry,
923            error,
924            utc_expiry,
925            cached,
926            raw_content: content.to_string(),
927            arrived_at: Instant::now(),
928        })
929    }
930}
931
932/// Event indicating that the circuit build timeout has changed.
933///
934/// Tor dynamically adjusts its circuit build timeout based on observed
935/// circuit construction times. This event is emitted when the timeout
936/// value changes, providing insight into network performance.
937///
938/// # Timeout Calculation
939///
940/// Tor uses a Pareto distribution to model circuit build times:
941/// - `xm` - The Pareto Xm parameter (minimum value)
942/// - `alpha` - The Pareto alpha parameter (shape)
943/// - `quantile` - The CDF cutoff quantile
944///
945/// # Set Types
946///
947/// The `set_type` indicates why the timeout changed:
948/// - [`TimeoutSetType::Computed`] - Calculated from observed times
949/// - [`TimeoutSetType::Reset`] - Reset to default values
950/// - [`TimeoutSetType::Suspended`] - Timeout learning suspended
951/// - [`TimeoutSetType::Discard`] - Discarding learned values
952/// - [`TimeoutSetType::Resume`] - Resuming timeout learning
953///
954/// # Example
955///
956/// ```rust,ignore
957/// use stem_rs::events::BuildTimeoutSetEvent;
958///
959/// fn handle_timeout(event: &BuildTimeoutSetEvent) {
960///     if let Some(timeout) = event.timeout {
961///         println!("Circuit timeout set to {}ms ({:?})", timeout, event.set_type);
962///     }
963///     if let Some(rate) = event.timeout_rate {
964///         println!("Timeout rate: {:.2}%", rate * 100.0);
965///     }
966/// }
967/// ```
968///
969/// # See Also
970///
971/// - [`TimeoutSetType`] - Timeout change reasons
972#[derive(Debug, Clone)]
973pub struct BuildTimeoutSetEvent {
974    /// Type of timeout change.
975    pub set_type: TimeoutSetType,
976    /// Number of circuit build times used to calculate timeout.
977    pub total_times: Option<u32>,
978    /// Circuit build timeout in milliseconds.
979    pub timeout: Option<u32>,
980    /// Pareto Xm parameter in milliseconds.
981    pub xm: Option<u32>,
982    /// Pareto alpha parameter.
983    pub alpha: Option<f64>,
984    /// CDF quantile cutoff point.
985    pub quantile: Option<f64>,
986    /// Ratio of circuits that timed out.
987    pub timeout_rate: Option<f64>,
988    /// Duration to keep measurement circuits in milliseconds.
989    pub close_timeout: Option<u32>,
990    /// Ratio of measurement circuits that were closed.
991    pub close_rate: Option<f64>,
992    raw_content: String,
993    arrived_at: Instant,
994}
995
996impl Event for BuildTimeoutSetEvent {
997    fn event_type(&self) -> EventType {
998        EventType::BuildTimeoutSet
999    }
1000    fn raw_content(&self) -> &str {
1001        &self.raw_content
1002    }
1003    fn arrived_at(&self) -> Instant {
1004        self.arrived_at
1005    }
1006}
1007
1008impl BuildTimeoutSetEvent {
1009    /// Parses a build timeout set event from raw control protocol content.
1010    ///
1011    /// # Arguments
1012    ///
1013    /// * `content` - The event content after the event type
1014    ///
1015    /// # Event Format
1016    ///
1017    /// ```text
1018    /// SetType [TOTAL_TIMES=...] [TIMEOUT_MS=...] [XM=...] [ALPHA=...]
1019    /// [CUTOFF_QUANTILE=...] [TIMEOUT_RATE=...] [CLOSE_MS=...] [CLOSE_RATE=...]
1020    /// ```
1021    ///
1022    /// # Errors
1023    ///
1024    /// Returns [`Error::Protocol`] if:
1025    /// - The set type is missing or unrecognized
1026    /// - Numeric values cannot be parsed
1027    pub fn parse(content: &str) -> Result<Self, Error> {
1028        let mut line = ControlLine::new(content);
1029        let set_type_str = line.pop(false, false)?;
1030        let set_type = parse_timeout_set_type(&set_type_str)?;
1031
1032        let mut total_times = None;
1033        let mut timeout = None;
1034        let mut xm = None;
1035        let mut alpha = None;
1036        let mut quantile = None;
1037        let mut timeout_rate = None;
1038        let mut close_timeout = None;
1039        let mut close_rate = None;
1040
1041        while !line.is_empty() {
1042            if line.is_next_mapping(Some("TOTAL_TIMES"), false) {
1043                let (_, v) = line.pop_mapping(false, false)?;
1044                total_times = Some(
1045                    v.parse()
1046                        .map_err(|_| Error::Protocol(format!("invalid TOTAL_TIMES: {}", v)))?,
1047                );
1048            } else if line.is_next_mapping(Some("TIMEOUT_MS"), false) {
1049                let (_, v) = line.pop_mapping(false, false)?;
1050                timeout = Some(
1051                    v.parse()
1052                        .map_err(|_| Error::Protocol(format!("invalid TIMEOUT_MS: {}", v)))?,
1053                );
1054            } else if line.is_next_mapping(Some("XM"), false) {
1055                let (_, v) = line.pop_mapping(false, false)?;
1056                xm = Some(
1057                    v.parse()
1058                        .map_err(|_| Error::Protocol(format!("invalid XM: {}", v)))?,
1059                );
1060            } else if line.is_next_mapping(Some("ALPHA"), false) {
1061                let (_, v) = line.pop_mapping(false, false)?;
1062                alpha = Some(
1063                    v.parse()
1064                        .map_err(|_| Error::Protocol(format!("invalid ALPHA: {}", v)))?,
1065                );
1066            } else if line.is_next_mapping(Some("CUTOFF_QUANTILE"), false) {
1067                let (_, v) = line.pop_mapping(false, false)?;
1068                quantile = Some(
1069                    v.parse()
1070                        .map_err(|_| Error::Protocol(format!("invalid CUTOFF_QUANTILE: {}", v)))?,
1071                );
1072            } else if line.is_next_mapping(Some("TIMEOUT_RATE"), false) {
1073                let (_, v) = line.pop_mapping(false, false)?;
1074                timeout_rate = Some(
1075                    v.parse()
1076                        .map_err(|_| Error::Protocol(format!("invalid TIMEOUT_RATE: {}", v)))?,
1077                );
1078            } else if line.is_next_mapping(Some("CLOSE_MS"), false) {
1079                let (_, v) = line.pop_mapping(false, false)?;
1080                close_timeout = Some(
1081                    v.parse()
1082                        .map_err(|_| Error::Protocol(format!("invalid CLOSE_MS: {}", v)))?,
1083                );
1084            } else if line.is_next_mapping(Some("CLOSE_RATE"), false) {
1085                let (_, v) = line.pop_mapping(false, false)?;
1086                close_rate = Some(
1087                    v.parse()
1088                        .map_err(|_| Error::Protocol(format!("invalid CLOSE_RATE: {}", v)))?,
1089                );
1090            } else {
1091                let _ = line.pop(false, false)?;
1092            }
1093        }
1094
1095        Ok(Self {
1096            set_type,
1097            total_times,
1098            timeout,
1099            xm,
1100            alpha,
1101            quantile,
1102            timeout_rate,
1103            close_timeout,
1104            close_rate,
1105            raw_content: content.to_string(),
1106            arrived_at: Instant::now(),
1107        })
1108    }
1109}
1110
1111/// Event indicating that guard relay status has changed.
1112///
1113/// Guard events track changes to the entry guards that Tor uses for the
1114/// first hop of circuits. Entry guards are a security feature that limits
1115/// the set of relays that can observe your traffic entering the Tor network.
1116///
1117/// # Guard Types
1118///
1119/// Currently, only [`GuardType::Entry`] is used, representing entry guards.
1120///
1121/// # Guard Status
1122///
1123/// Guards can have these statuses:
1124/// - [`GuardStatus::New`] - Newly selected as a guard
1125/// - [`GuardStatus::Up`] - Guard is reachable
1126/// - [`GuardStatus::Down`] - Guard is unreachable
1127/// - [`GuardStatus::Good`] - Guard confirmed as good
1128/// - [`GuardStatus::Bad`] - Guard marked as bad
1129/// - [`GuardStatus::Dropped`] - Guard removed from list
1130///
1131/// # Example
1132///
1133/// ```rust,ignore
1134/// use stem_rs::events::GuardEvent;
1135/// use stem_rs::GuardStatus;
1136///
1137/// fn handle_guard(event: &GuardEvent) {
1138///     match event.status {
1139///         GuardStatus::New => {
1140///             println!("New guard: {} ({:?})",
1141///                 event.endpoint_fingerprint, event.endpoint_nickname);
1142///         }
1143///         GuardStatus::Down => {
1144///             println!("Guard {} is down", event.endpoint_fingerprint);
1145///         }
1146///         GuardStatus::Dropped => {
1147///             println!("Guard {} dropped", event.endpoint_fingerprint);
1148///         }
1149///         _ => {}
1150///     }
1151/// }
1152/// ```
1153///
1154/// # See Also
1155///
1156/// - [`GuardType`] - Guard type values
1157/// - [`GuardStatus`] - Guard status values
1158#[derive(Debug, Clone)]
1159pub struct GuardEvent {
1160    /// Type of guard (currently only Entry).
1161    pub guard_type: GuardType,
1162    /// Full endpoint string (fingerprint with optional nickname).
1163    pub endpoint: String,
1164    /// Relay fingerprint (40 hex characters).
1165    pub endpoint_fingerprint: String,
1166    /// Relay nickname if available.
1167    pub endpoint_nickname: Option<String>,
1168    /// Current status of the guard.
1169    pub status: GuardStatus,
1170    raw_content: String,
1171    arrived_at: Instant,
1172}
1173
1174impl Event for GuardEvent {
1175    fn event_type(&self) -> EventType {
1176        EventType::Guard
1177    }
1178    fn raw_content(&self) -> &str {
1179        &self.raw_content
1180    }
1181    fn arrived_at(&self) -> Instant {
1182        self.arrived_at
1183    }
1184}
1185
1186impl GuardEvent {
1187    /// Parses a guard event from raw control protocol content.
1188    ///
1189    /// # Arguments
1190    ///
1191    /// * `content` - The event content after the event type
1192    ///
1193    /// # Event Format
1194    ///
1195    /// ```text
1196    /// GuardType Endpoint Status
1197    /// ```
1198    ///
1199    /// Where Endpoint is either a fingerprint or `fingerprint=nickname`.
1200    ///
1201    /// # Errors
1202    ///
1203    /// Returns [`Error::Protocol`] if:
1204    /// - Required fields are missing
1205    /// - The guard type or status is unrecognized
1206    pub fn parse(content: &str) -> Result<Self, Error> {
1207        let mut line = ControlLine::new(content);
1208        let guard_type_str = line.pop(false, false)?;
1209        let endpoint = line.pop(false, false)?;
1210        let status_str = line.pop(false, false)?;
1211
1212        let guard_type = parse_guard_type(&guard_type_str)?;
1213        let status = parse_guard_status(&status_str)?;
1214        let (fingerprint, nickname) = parse_relay_endpoint(&endpoint);
1215
1216        Ok(Self {
1217            guard_type,
1218            endpoint,
1219            endpoint_fingerprint: fingerprint,
1220            endpoint_nickname: nickname,
1221            status,
1222            raw_content: content.to_string(),
1223            arrived_at: Instant::now(),
1224        })
1225    }
1226}
1227
1228/// Event indicating that new relay descriptors are available.
1229///
1230/// This event is emitted when Tor receives new server descriptors for
1231/// relays in the network. It provides a list of relays whose descriptors
1232/// have been updated.
1233///
1234/// # Relay Identification
1235///
1236/// Each relay is identified by its fingerprint and optionally its nickname.
1237/// The `relays` field contains `(fingerprint, nickname)` tuples.
1238///
1239/// # Example
1240///
1241/// ```rust,ignore
1242/// use stem_rs::events::NewDescEvent;
1243///
1244/// fn handle_newdesc(event: &NewDescEvent) {
1245///     println!("Received {} new descriptors:", event.relays.len());
1246///     for (fingerprint, nickname) in &event.relays {
1247///         match nickname {
1248///             Some(nick) => println!("  {} ({})", fingerprint, nick),
1249///             None => println!("  {}", fingerprint),
1250///         }
1251///     }
1252/// }
1253/// ```
1254#[derive(Debug, Clone)]
1255pub struct NewDescEvent {
1256    /// List of relays with new descriptors as `(fingerprint, nickname)` tuples.
1257    pub relays: Vec<(String, Option<String>)>,
1258    raw_content: String,
1259    arrived_at: Instant,
1260}
1261
1262impl Event for NewDescEvent {
1263    fn event_type(&self) -> EventType {
1264        EventType::NewDesc
1265    }
1266    fn raw_content(&self) -> &str {
1267        &self.raw_content
1268    }
1269    fn arrived_at(&self) -> Instant {
1270        self.arrived_at
1271    }
1272}
1273
1274impl NewDescEvent {
1275    /// Parses a new descriptor event from raw control protocol content.
1276    ///
1277    /// # Arguments
1278    ///
1279    /// * `content` - The event content after the event type
1280    ///
1281    /// # Event Format
1282    ///
1283    /// ```text
1284    /// Relay1 [Relay2 ...]
1285    /// ```
1286    ///
1287    /// Where each relay is either a fingerprint or `fingerprint=nickname`.
1288    ///
1289    /// # Errors
1290    ///
1291    /// This method currently does not return errors but returns `Result`
1292    /// for API consistency.
1293    pub fn parse(content: &str) -> Result<Self, Error> {
1294        let mut relays = Vec::new();
1295        for token in content.split_whitespace() {
1296            let (fingerprint, nickname) = parse_relay_endpoint(token);
1297            relays.push((fingerprint, nickname));
1298        }
1299        Ok(Self {
1300            relays,
1301            raw_content: content.to_string(),
1302            arrived_at: Instant::now(),
1303        })
1304    }
1305}
1306
1307/// Event indicating that Tor received a signal.
1308///
1309/// This event is emitted when Tor receives a signal, either from the
1310/// operating system or via the control protocol's `SIGNAL` command.
1311///
1312/// # Signals
1313///
1314/// Common signals include:
1315/// - [`Signal::Newnym`] - Request new circuits
1316/// - [`Signal::Reload`] - Reload configuration
1317/// - [`Signal::Shutdown`] - Graceful shutdown
1318/// - [`Signal::Halt`] - Immediate shutdown
1319///
1320/// # Example
1321///
1322/// ```rust,ignore
1323/// use stem_rs::events::SignalEvent;
1324/// use stem_rs::Signal;
1325///
1326/// fn handle_signal(event: &SignalEvent) {
1327///     match event.signal {
1328///         Signal::Newnym => println!("New identity requested"),
1329///         Signal::Shutdown => println!("Tor is shutting down"),
1330///         _ => println!("Received signal: {:?}", event.signal),
1331///     }
1332/// }
1333/// ```
1334///
1335/// # See Also
1336///
1337/// - [`Signal`] - Signal types
1338#[derive(Debug, Clone)]
1339pub struct SignalEvent {
1340    /// The signal that was received.
1341    pub signal: Signal,
1342    raw_content: String,
1343    arrived_at: Instant,
1344}
1345
1346impl Event for SignalEvent {
1347    fn event_type(&self) -> EventType {
1348        EventType::Signal
1349    }
1350    fn raw_content(&self) -> &str {
1351        &self.raw_content
1352    }
1353    fn arrived_at(&self) -> Instant {
1354        self.arrived_at
1355    }
1356}
1357
1358impl SignalEvent {
1359    /// Parses a signal event from raw control protocol content.
1360    ///
1361    /// # Arguments
1362    ///
1363    /// * `content` - The event content after the event type
1364    ///
1365    /// # Errors
1366    ///
1367    /// Returns [`Error::Protocol`] if the signal is unrecognized.
1368    pub fn parse(content: &str) -> Result<Self, Error> {
1369        let signal = parse_signal(content.trim())?;
1370        Ok(Self {
1371            signal,
1372            raw_content: content.to_string(),
1373            arrived_at: Instant::now(),
1374        })
1375    }
1376}
1377
1378/// Event providing status information about Tor's operation.
1379///
1380/// Status events provide structured information about Tor's operational
1381/// state, including bootstrap progress, circuit establishment, and
1382/// various warnings or errors.
1383///
1384/// # Status Types
1385///
1386/// Events are categorized by type:
1387/// - [`StatusType::General`] - General status (e.g., consensus arrived)
1388/// - [`StatusType::Client`] - Client-specific status (e.g., bootstrap progress)
1389/// - [`StatusType::Server`] - Server-specific status (e.g., reachability checks)
1390///
1391/// # Bootstrap Progress
1392///
1393/// The most common use of status events is tracking bootstrap progress.
1394/// Look for `action == "BOOTSTRAP"` and check the `PROGRESS` argument.
1395///
1396/// # Example
1397///
1398/// ```rust,ignore
1399/// use stem_rs::events::StatusEvent;
1400/// use stem_rs::StatusType;
1401///
1402/// fn handle_status(event: &StatusEvent) {
1403///     if event.action == "BOOTSTRAP" {
1404///         if let Some(progress) = event.arguments.get("PROGRESS") {
1405///             println!("Bootstrap progress: {}%", progress);
1406///         }
1407///         if let Some(summary) = event.arguments.get("SUMMARY") {
1408///             println!("Status: {}", summary);
1409///         }
1410///     }
1411/// }
1412/// ```
1413///
1414/// # See Also
1415///
1416/// - [`StatusType`] - Status event types
1417/// - [`Runlevel`] - Severity levels
1418#[derive(Debug, Clone)]
1419pub struct StatusEvent {
1420    /// Type of status event (General, Client, or Server).
1421    pub status_type: StatusType,
1422    /// Severity level of the status message.
1423    pub runlevel: Runlevel,
1424    /// Action or event name (e.g., "BOOTSTRAP", "CIRCUIT_ESTABLISHED").
1425    pub action: String,
1426    /// Key-value arguments providing additional details.
1427    pub arguments: HashMap<String, String>,
1428    raw_content: String,
1429    arrived_at: Instant,
1430}
1431
1432impl Event for StatusEvent {
1433    fn event_type(&self) -> EventType {
1434        EventType::Status
1435    }
1436    fn raw_content(&self) -> &str {
1437        &self.raw_content
1438    }
1439    fn arrived_at(&self) -> Instant {
1440        self.arrived_at
1441    }
1442}
1443
1444impl StatusEvent {
1445    /// Parses a status event from raw control protocol content.
1446    ///
1447    /// # Arguments
1448    ///
1449    /// * `status_type` - The type of status event
1450    /// * `content` - The event content after the event type
1451    ///
1452    /// # Event Format
1453    ///
1454    /// ```text
1455    /// Runlevel Action [Key=Value ...]
1456    /// ```
1457    ///
1458    /// # Errors
1459    ///
1460    /// Returns [`Error::Protocol`] if:
1461    /// - Required fields are missing
1462    /// - The runlevel is unrecognized
1463    pub fn parse(status_type: StatusType, content: &str) -> Result<Self, Error> {
1464        let mut line = ControlLine::new(content);
1465        let runlevel_str = line.pop(false, false)?;
1466        let action = line.pop(false, false)?;
1467        let runlevel = parse_runlevel(&runlevel_str)?;
1468
1469        let mut arguments = HashMap::new();
1470        while !line.is_empty() {
1471            if line.peek_key().is_some() {
1472                let quoted = line.is_next_mapping(None, true);
1473                let (k, v) = line.pop_mapping(quoted, quoted)?;
1474                arguments.insert(k, v);
1475            } else {
1476                let _ = line.pop(false, false)?;
1477            }
1478        }
1479
1480        Ok(Self {
1481            status_type,
1482            runlevel,
1483            action,
1484            arguments,
1485            raw_content: content.to_string(),
1486            arrived_at: Instant::now(),
1487        })
1488    }
1489}
1490
1491/// Event indicating that Tor's configuration has changed.
1492///
1493/// This event is emitted when configuration options are modified, either
1494/// through `SETCONF` commands or by reloading the configuration file.
1495///
1496/// # Changed vs Unset
1497///
1498/// - `changed` - Options that were set to new values
1499/// - `unset` - Options that were reset to defaults
1500///
1501/// Options can have multiple values (e.g., `ExitPolicy`), so `changed`
1502/// maps option names to a list of values.
1503///
1504/// # Example
1505///
1506/// ```rust,ignore
1507/// use stem_rs::events::ConfChangedEvent;
1508///
1509/// fn handle_conf_changed(event: &ConfChangedEvent) {
1510///     for (option, values) in &event.changed {
1511///         println!("Changed: {} = {:?}", option, values);
1512///     }
1513///     for option in &event.unset {
1514///         println!("Unset: {}", option);
1515///     }
1516/// }
1517/// ```
1518#[derive(Debug, Clone)]
1519pub struct ConfChangedEvent {
1520    /// Options that were changed, mapped to their new values.
1521    pub changed: HashMap<String, Vec<String>>,
1522    /// Options that were unset (reset to defaults).
1523    pub unset: Vec<String>,
1524    raw_content: String,
1525    arrived_at: Instant,
1526}
1527
1528impl Event for ConfChangedEvent {
1529    fn event_type(&self) -> EventType {
1530        EventType::ConfChanged
1531    }
1532    fn raw_content(&self) -> &str {
1533        &self.raw_content
1534    }
1535    fn arrived_at(&self) -> Instant {
1536        self.arrived_at
1537    }
1538}
1539
1540impl ConfChangedEvent {
1541    /// Parses a configuration changed event from multi-line content.
1542    ///
1543    /// # Arguments
1544    ///
1545    /// * `lines` - The event content lines (excluding header/footer)
1546    ///
1547    /// # Event Format
1548    ///
1549    /// Each line is either:
1550    /// - `Key=Value` - Option set to a value
1551    /// - `Key` - Option unset
1552    ///
1553    /// # Errors
1554    ///
1555    /// This method currently does not return errors but returns `Result`
1556    /// for API consistency.
1557    pub fn parse(lines: &[String]) -> Result<Self, Error> {
1558        let mut changed: HashMap<String, Vec<String>> = HashMap::new();
1559        let mut unset = Vec::new();
1560
1561        for line in lines {
1562            if let Some(eq_pos) = line.find('=') {
1563                let key = line[..eq_pos].to_string();
1564                let value = line[eq_pos + 1..].to_string();
1565                changed.entry(key).or_default().push(value);
1566            } else if !line.is_empty() {
1567                unset.push(line.clone());
1568            }
1569        }
1570
1571        Ok(Self {
1572            changed,
1573            unset,
1574            raw_content: lines.join("\n"),
1575            arrived_at: Instant::now(),
1576        })
1577    }
1578}
1579
1580/// Event indicating network connectivity status.
1581///
1582/// This event is emitted when Tor's view of network liveness changes.
1583/// It indicates whether Tor believes the network is reachable.
1584///
1585/// # Status Values
1586///
1587/// - `"UP"` - Network is reachable
1588/// - `"DOWN"` - Network is unreachable
1589///
1590/// # Example
1591///
1592/// ```rust,ignore
1593/// use stem_rs::events::NetworkLivenessEvent;
1594///
1595/// fn handle_liveness(event: &NetworkLivenessEvent) {
1596///     match event.status.as_str() {
1597///         "UP" => println!("Network is up"),
1598///         "DOWN" => println!("Network is down"),
1599///         _ => println!("Unknown network status: {}", event.status),
1600///     }
1601/// }
1602/// ```
1603#[derive(Debug, Clone)]
1604pub struct NetworkLivenessEvent {
1605    /// Network status ("UP" or "DOWN").
1606    pub status: String,
1607    raw_content: String,
1608    arrived_at: Instant,
1609}
1610
1611impl Event for NetworkLivenessEvent {
1612    fn event_type(&self) -> EventType {
1613        EventType::NetworkLiveness
1614    }
1615    fn raw_content(&self) -> &str {
1616        &self.raw_content
1617    }
1618    fn arrived_at(&self) -> Instant {
1619        self.arrived_at
1620    }
1621}
1622
1623impl NetworkLivenessEvent {
1624    /// Parses a network liveness event from raw control protocol content.
1625    ///
1626    /// # Arguments
1627    ///
1628    /// * `content` - The event content after the event type
1629    ///
1630    /// # Errors
1631    ///
1632    /// This method currently does not return errors but returns `Result`
1633    /// for API consistency.
1634    pub fn parse(content: &str) -> Result<Self, Error> {
1635        let status = content.split_whitespace().next().unwrap_or("").to_string();
1636        Ok(Self {
1637            status,
1638            raw_content: content.to_string(),
1639            arrived_at: Instant::now(),
1640        })
1641    }
1642}
1643
1644/// Event providing bandwidth information for a specific circuit.
1645///
1646/// Unlike [`BandwidthEvent`] which provides aggregate bandwidth, this event
1647/// tracks bandwidth usage per circuit. This is useful for monitoring
1648/// individual connections or identifying high-bandwidth circuits.
1649///
1650/// # Example
1651///
1652/// ```rust,ignore
1653/// use stem_rs::events::CircuitBandwidthEvent;
1654///
1655/// fn handle_circ_bw(event: &CircuitBandwidthEvent) {
1656///     println!("Circuit {} bandwidth: {} read, {} written",
1657///         event.id, event.read, event.written);
1658///     if let Some(time) = &event.time {
1659///         println!("  at {}", time);
1660///     }
1661/// }
1662/// ```
1663///
1664/// # See Also
1665///
1666/// - [`BandwidthEvent`] - Aggregate bandwidth
1667/// - [`ConnectionBandwidthEvent`] - Per-connection bandwidth
1668#[derive(Debug, Clone)]
1669pub struct CircuitBandwidthEvent {
1670    /// Circuit identifier.
1671    pub id: CircuitId,
1672    /// Bytes read on this circuit.
1673    pub read: u64,
1674    /// Bytes written on this circuit.
1675    pub written: u64,
1676    /// User payload bytes received on this circuit (if available).
1677    ///
1678    /// This field was added in Tor 0.4.1.1-alpha and represents the actual
1679    /// user data received, excluding cell overhead.
1680    pub delivered_read: Option<u64>,
1681    /// User payload bytes sent on this circuit (if available).
1682    ///
1683    /// This field was added in Tor 0.4.1.1-alpha and represents the actual
1684    /// user data sent, excluding cell overhead.
1685    pub delivered_written: Option<u64>,
1686    /// Overhead bytes received on this circuit (if available).
1687    ///
1688    /// This field was added in Tor 0.4.1.1-alpha and represents padding
1689    /// added to make cells a fixed length.
1690    pub overhead_read: Option<u64>,
1691    /// Overhead bytes sent on this circuit (if available).
1692    ///
1693    /// This field was added in Tor 0.4.1.1-alpha and represents padding
1694    /// added to make cells a fixed length.
1695    pub overhead_written: Option<u64>,
1696    /// Timestamp of the measurement (if available).
1697    pub time: Option<DateTime<Utc>>,
1698    raw_content: String,
1699    arrived_at: Instant,
1700}
1701
1702impl Event for CircuitBandwidthEvent {
1703    fn event_type(&self) -> EventType {
1704        EventType::CircBw
1705    }
1706    fn raw_content(&self) -> &str {
1707        &self.raw_content
1708    }
1709    fn arrived_at(&self) -> Instant {
1710        self.arrived_at
1711    }
1712}
1713
1714impl CircuitBandwidthEvent {
1715    /// Parses a circuit bandwidth event from raw control protocol content.
1716    ///
1717    /// # Arguments
1718    ///
1719    /// * `content` - The event content after the event type
1720    ///
1721    /// # Event Format
1722    ///
1723    /// ```text
1724    /// ID=CircuitID READ=bytes WRITTEN=bytes [DELIVERED_READ=bytes] [DELIVERED_WRITTEN=bytes]
1725    /// [OVERHEAD_READ=bytes] [OVERHEAD_WRITTEN=bytes] [TIME=timestamp]
1726    /// ```
1727    ///
1728    /// The DELIVERED_* and OVERHEAD_* fields were added in Tor 0.4.1.1-alpha.
1729    ///
1730    /// # Errors
1731    ///
1732    /// Returns [`Error::Protocol`] if:
1733    /// - Required fields (ID, READ, WRITTEN) are missing
1734    /// - Numeric values cannot be parsed
1735    pub fn parse(content: &str) -> Result<Self, Error> {
1736        let mut line = ControlLine::new(content);
1737        let mut id = None;
1738        let mut read = None;
1739        let mut written = None;
1740        let mut delivered_read = None;
1741        let mut delivered_written = None;
1742        let mut overhead_read = None;
1743        let mut overhead_written = None;
1744        let mut time = None;
1745
1746        while !line.is_empty() {
1747            if line.is_next_mapping(Some("ID"), false) {
1748                let (_, v) = line.pop_mapping(false, false)?;
1749                id = Some(CircuitId::new(v));
1750            } else if line.is_next_mapping(Some("READ"), false) {
1751                let (_, v) = line.pop_mapping(false, false)?;
1752                read = Some(
1753                    v.parse()
1754                        .map_err(|_| Error::Protocol(format!("invalid READ value: {}", v)))?,
1755                );
1756            } else if line.is_next_mapping(Some("WRITTEN"), false) {
1757                let (_, v) = line.pop_mapping(false, false)?;
1758                written = Some(
1759                    v.parse()
1760                        .map_err(|_| Error::Protocol(format!("invalid WRITTEN value: {}", v)))?,
1761                );
1762            } else if line.is_next_mapping(Some("DELIVERED_READ"), false) {
1763                let (_, v) = line.pop_mapping(false, false)?;
1764                delivered_read = Some(v.parse().map_err(|_| {
1765                    Error::Protocol(format!("invalid DELIVERED_READ value: {}", v))
1766                })?);
1767            } else if line.is_next_mapping(Some("DELIVERED_WRITTEN"), false) {
1768                let (_, v) = line.pop_mapping(false, false)?;
1769                delivered_written = Some(v.parse().map_err(|_| {
1770                    Error::Protocol(format!("invalid DELIVERED_WRITTEN value: {}", v))
1771                })?);
1772            } else if line.is_next_mapping(Some("OVERHEAD_READ"), false) {
1773                let (_, v) = line.pop_mapping(false, false)?;
1774                overhead_read =
1775                    Some(v.parse().map_err(|_| {
1776                        Error::Protocol(format!("invalid OVERHEAD_READ value: {}", v))
1777                    })?);
1778            } else if line.is_next_mapping(Some("OVERHEAD_WRITTEN"), false) {
1779                let (_, v) = line.pop_mapping(false, false)?;
1780                overhead_written = Some(v.parse().map_err(|_| {
1781                    Error::Protocol(format!("invalid OVERHEAD_WRITTEN value: {}", v))
1782                })?);
1783            } else if line.is_next_mapping(Some("TIME"), false) {
1784                let (_, v) = line.pop_mapping(false, false)?;
1785                time = parse_iso_timestamp(&v).ok();
1786            } else {
1787                let _ = line.pop(false, false)?;
1788            }
1789        }
1790
1791        Ok(Self {
1792            id: id.ok_or_else(|| Error::Protocol("missing ID in CIRC_BW".to_string()))?,
1793            read: read.ok_or_else(|| Error::Protocol("missing READ in CIRC_BW".to_string()))?,
1794            written: written
1795                .ok_or_else(|| Error::Protocol("missing WRITTEN in CIRC_BW".to_string()))?,
1796            delivered_read,
1797            delivered_written,
1798            overhead_read,
1799            overhead_written,
1800            time,
1801            raw_content: content.to_string(),
1802            arrived_at: Instant::now(),
1803        })
1804    }
1805}
1806
1807/// Event providing bandwidth information for a specific connection.
1808///
1809/// This event tracks bandwidth usage per connection, categorized by
1810/// connection type (OR, Dir, Exit). Useful for detailed bandwidth
1811/// analysis and monitoring.
1812///
1813/// # Connection Types
1814///
1815/// - [`ConnectionType::Or`] - Onion Router connections (relay-to-relay)
1816/// - [`ConnectionType::Dir`] - Directory connections
1817/// - [`ConnectionType::Exit`] - Exit connections to the internet
1818///
1819/// # Example
1820///
1821/// ```rust,ignore
1822/// use stem_rs::events::ConnectionBandwidthEvent;
1823/// use stem_rs::ConnectionType;
1824///
1825/// fn handle_conn_bw(event: &ConnectionBandwidthEvent) {
1826///     let type_str = match event.conn_type {
1827///         ConnectionType::Or => "OR",
1828///         ConnectionType::Dir => "Dir",
1829///         ConnectionType::Exit => "Exit",
1830///     };
1831///     println!("{} connection {}: {} read, {} written",
1832///         type_str, event.id, event.read, event.written);
1833/// }
1834/// ```
1835///
1836/// # See Also
1837///
1838/// - [`BandwidthEvent`] - Aggregate bandwidth
1839/// - [`CircuitBandwidthEvent`] - Per-circuit bandwidth
1840/// - [`ConnectionType`] - Connection types
1841#[derive(Debug, Clone)]
1842pub struct ConnectionBandwidthEvent {
1843    /// Connection identifier.
1844    pub id: String,
1845    /// Type of connection.
1846    pub conn_type: ConnectionType,
1847    /// Bytes read on this connection.
1848    pub read: u64,
1849    /// Bytes written on this connection.
1850    pub written: u64,
1851    raw_content: String,
1852    arrived_at: Instant,
1853}
1854
1855impl Event for ConnectionBandwidthEvent {
1856    fn event_type(&self) -> EventType {
1857        EventType::ConnBw
1858    }
1859    fn raw_content(&self) -> &str {
1860        &self.raw_content
1861    }
1862    fn arrived_at(&self) -> Instant {
1863        self.arrived_at
1864    }
1865}
1866
1867impl ConnectionBandwidthEvent {
1868    /// Parses a connection bandwidth event from raw control protocol content.
1869    ///
1870    /// # Arguments
1871    ///
1872    /// * `content` - The event content after the event type
1873    ///
1874    /// # Event Format
1875    ///
1876    /// ```text
1877    /// ID=ConnID TYPE=ConnType READ=bytes WRITTEN=bytes
1878    /// ```
1879    ///
1880    /// # Errors
1881    ///
1882    /// Returns [`Error::Protocol`] if:
1883    /// - Required fields (ID, TYPE, READ, WRITTEN) are missing
1884    /// - The connection type is unrecognized
1885    /// - Numeric values cannot be parsed
1886    pub fn parse(content: &str) -> Result<Self, Error> {
1887        let mut line = ControlLine::new(content);
1888        let mut id = None;
1889        let mut conn_type = None;
1890        let mut read = None;
1891        let mut written = None;
1892
1893        while !line.is_empty() {
1894            if line.is_next_mapping(Some("ID"), false) {
1895                let (_, v) = line.pop_mapping(false, false)?;
1896                id = Some(v);
1897            } else if line.is_next_mapping(Some("TYPE"), false) {
1898                let (_, v) = line.pop_mapping(false, false)?;
1899                conn_type = Some(parse_connection_type(&v)?);
1900            } else if line.is_next_mapping(Some("READ"), false) {
1901                let (_, v) = line.pop_mapping(false, false)?;
1902                read = Some(
1903                    v.parse()
1904                        .map_err(|_| Error::Protocol(format!("invalid READ value: {}", v)))?,
1905                );
1906            } else if line.is_next_mapping(Some("WRITTEN"), false) {
1907                let (_, v) = line.pop_mapping(false, false)?;
1908                written = Some(
1909                    v.parse()
1910                        .map_err(|_| Error::Protocol(format!("invalid WRITTEN value: {}", v)))?,
1911                );
1912            } else {
1913                let _ = line.pop(false, false)?;
1914            }
1915        }
1916
1917        Ok(Self {
1918            id: id.ok_or_else(|| Error::Protocol("missing ID in CONN_BW".to_string()))?,
1919            conn_type: conn_type
1920                .ok_or_else(|| Error::Protocol("missing TYPE in CONN_BW".to_string()))?,
1921            read: read.ok_or_else(|| Error::Protocol("missing READ in CONN_BW".to_string()))?,
1922            written: written
1923                .ok_or_else(|| Error::Protocol("missing WRITTEN in CONN_BW".to_string()))?,
1924            raw_content: content.to_string(),
1925            arrived_at: Instant::now(),
1926        })
1927    }
1928}
1929
1930/// Event triggered when fetching or uploading hidden service descriptors.
1931///
1932/// This event tracks the lifecycle of hidden service descriptor operations,
1933/// including requests, uploads, and failures. It's essential for monitoring
1934/// hidden service connectivity.
1935///
1936/// # Actions
1937///
1938/// The `action` field indicates the operation:
1939/// - [`HsDescAction::Requested`] - Descriptor fetch requested
1940/// - [`HsDescAction::Received`] - Descriptor successfully received
1941/// - [`HsDescAction::Uploaded`] - Descriptor successfully uploaded
1942/// - [`HsDescAction::Failed`] - Operation failed (check `reason`)
1943/// - [`HsDescAction::Created`] - New descriptor created
1944/// - [`HsDescAction::Ignore`] - Descriptor ignored
1945///
1946/// # Directory Information
1947///
1948/// The `directory` field contains the HSDir relay handling the request.
1949/// The fingerprint and nickname are extracted into separate fields for
1950/// convenience.
1951///
1952/// # Example
1953///
1954/// ```rust,ignore
1955/// use stem_rs::events::HsDescEvent;
1956/// use stem_rs::HsDescAction;
1957///
1958/// fn handle_hsdesc(event: &HsDescEvent) {
1959///     match event.action {
1960///         HsDescAction::Received => {
1961///             println!("Got descriptor for {} from {:?}",
1962///                 event.address, event.directory_nickname);
1963///         }
1964///         HsDescAction::Failed => {
1965///             println!("Failed to get descriptor for {}: {:?}",
1966///                 event.address, event.reason);
1967///         }
1968///         _ => {}
1969///     }
1970/// }
1971/// ```
1972///
1973/// # See Also
1974///
1975/// - [`HsDescAction`] - Descriptor actions
1976/// - [`HsDescReason`] - Failure reasons
1977/// - [`HsAuth`] - Authentication types
1978#[derive(Debug, Clone)]
1979pub struct HsDescEvent {
1980    /// Action being performed on the descriptor.
1981    pub action: HsDescAction,
1982    /// Hidden service address (onion address).
1983    pub address: String,
1984    /// Authentication type for the hidden service.
1985    pub authentication: Option<HsAuth>,
1986    /// Full directory relay string.
1987    pub directory: Option<String>,
1988    /// Directory relay fingerprint.
1989    pub directory_fingerprint: Option<String>,
1990    /// Directory relay nickname.
1991    pub directory_nickname: Option<String>,
1992    /// Descriptor identifier.
1993    pub descriptor_id: Option<String>,
1994    /// Reason for failure (if action is Failed).
1995    pub reason: Option<HsDescReason>,
1996    raw_content: String,
1997    arrived_at: Instant,
1998}
1999
2000impl Event for HsDescEvent {
2001    fn event_type(&self) -> EventType {
2002        EventType::HsDesc
2003    }
2004    fn raw_content(&self) -> &str {
2005        &self.raw_content
2006    }
2007    fn arrived_at(&self) -> Instant {
2008        self.arrived_at
2009    }
2010}
2011
2012impl HsDescEvent {
2013    /// Parses a hidden service descriptor event from raw control protocol content.
2014    ///
2015    /// # Arguments
2016    ///
2017    /// * `content` - The event content after the event type
2018    ///
2019    /// # Event Format
2020    ///
2021    /// ```text
2022    /// Action Address AuthType [Directory] [DescriptorID] [REASON=...]
2023    /// ```
2024    ///
2025    /// # Errors
2026    ///
2027    /// Returns [`Error::Protocol`] if:
2028    /// - Required fields are missing
2029    /// - The action is unrecognized
2030    pub fn parse(content: &str) -> Result<Self, Error> {
2031        let mut line = ControlLine::new(content);
2032        let action_str = line.pop(false, false)?;
2033        let address = line.pop(false, false)?;
2034        let auth_str = line.pop(false, false)?;
2035
2036        let action = parse_hs_desc_action(&action_str)?;
2037        let authentication = parse_hs_auth(&auth_str).ok();
2038
2039        let mut directory = None;
2040        let mut directory_fingerprint = None;
2041        let mut directory_nickname = None;
2042        let mut descriptor_id = None;
2043        let mut reason = None;
2044
2045        if !line.is_empty() {
2046            let dir_token = line.pop(false, false)?;
2047            if dir_token != "UNKNOWN" {
2048                directory = Some(dir_token.clone());
2049                let (fp, nick) = parse_relay_endpoint(&dir_token);
2050                directory_fingerprint = Some(fp);
2051                directory_nickname = nick;
2052            }
2053        }
2054
2055        if !line.is_empty() && line.peek_key().is_none_or(|k| k != "REASON") {
2056            descriptor_id = Some(line.pop(false, false)?);
2057        }
2058
2059        while !line.is_empty() {
2060            if line.is_next_mapping(Some("REASON"), false) {
2061                let (_, r) = line.pop_mapping(false, false)?;
2062                reason = parse_hs_desc_reason(&r).ok();
2063            } else {
2064                let _ = line.pop(false, false)?;
2065            }
2066        }
2067
2068        Ok(Self {
2069            action,
2070            address,
2071            authentication,
2072            directory,
2073            directory_fingerprint,
2074            directory_nickname,
2075            descriptor_id,
2076            reason,
2077            raw_content: content.to_string(),
2078            arrived_at: Instant::now(),
2079        })
2080    }
2081}
2082
2083/// Parses a circuit status string into a [`CircStatus`] enum variant.
2084///
2085/// Converts a case-insensitive string representation of a circuit status
2086/// from the Tor control protocol into the corresponding enum variant.
2087///
2088/// # Arguments
2089///
2090/// * `s` - The circuit status string to parse (e.g., "LAUNCHED", "BUILT")
2091///
2092/// # Returns
2093///
2094/// * `Ok(CircStatus)` - The parsed circuit status variant
2095/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2096///
2097/// # Supported Values
2098///
2099/// - `LAUNCHED` - Circuit construction has begun
2100/// - `BUILT` - Circuit is fully constructed and ready for use
2101/// - `GUARD_WAIT` - Waiting for guard node selection
2102/// - `EXTENDED` - Circuit has been extended by one hop
2103/// - `FAILED` - Circuit construction failed
2104/// - `CLOSED` - Circuit has been closed
2105fn parse_circ_status(s: &str) -> Result<CircStatus, Error> {
2106    match s.to_uppercase().as_str() {
2107        "LAUNCHED" => Ok(CircStatus::Launched),
2108        "BUILT" => Ok(CircStatus::Built),
2109        "GUARD_WAIT" => Ok(CircStatus::GuardWait),
2110        "EXTENDED" => Ok(CircStatus::Extended),
2111        "FAILED" => Ok(CircStatus::Failed),
2112        "CLOSED" => Ok(CircStatus::Closed),
2113        _ => Err(Error::Protocol(format!("unknown circuit status: {}", s))),
2114    }
2115}
2116
2117/// Parses a stream status string into a [`StreamStatus`] enum variant.
2118///
2119/// Converts a case-insensitive string representation of a stream status
2120/// from the Tor control protocol into the corresponding enum variant.
2121///
2122/// # Arguments
2123///
2124/// * `s` - The stream status string to parse (e.g., "NEW", "SUCCEEDED")
2125///
2126/// # Returns
2127///
2128/// * `Ok(StreamStatus)` - The parsed stream status variant
2129/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2130///
2131/// # Supported Values
2132///
2133/// - `NEW` - New stream awaiting connection
2134/// - `NEWRESOLVE` - New stream awaiting DNS resolution
2135/// - `REMAP` - Address has been remapped
2136/// - `SENTCONNECT` - Connect request sent to exit
2137/// - `SENTRESOLVE` - Resolve request sent to exit
2138/// - `SUCCEEDED` - Stream connection succeeded
2139/// - `FAILED` - Stream connection failed
2140/// - `DETACHED` - Stream detached from circuit
2141/// - `CONTROLLER_WAIT` - Waiting for controller attachment
2142/// - `CLOSED` - Stream has been closed
2143fn parse_stream_status(s: &str) -> Result<StreamStatus, Error> {
2144    match s.to_uppercase().as_str() {
2145        "NEW" => Ok(StreamStatus::New),
2146        "NEWRESOLVE" => Ok(StreamStatus::NewResolve),
2147        "REMAP" => Ok(StreamStatus::Remap),
2148        "SENTCONNECT" => Ok(StreamStatus::SentConnect),
2149        "SENTRESOLVE" => Ok(StreamStatus::SentResolve),
2150        "SUCCEEDED" => Ok(StreamStatus::Succeeded),
2151        "FAILED" => Ok(StreamStatus::Failed),
2152        "DETACHED" => Ok(StreamStatus::Detached),
2153        "CONTROLLER_WAIT" => Ok(StreamStatus::ControllerWait),
2154        "CLOSED" => Ok(StreamStatus::Closed),
2155        _ => Err(Error::Protocol(format!("unknown stream status: {}", s))),
2156    }
2157}
2158
2159/// Parses an OR (Onion Router) connection status string into an [`OrStatus`] enum variant.
2160///
2161/// Converts a case-insensitive string representation of an OR connection status
2162/// from the Tor control protocol into the corresponding enum variant.
2163///
2164/// # Arguments
2165///
2166/// * `s` - The OR status string to parse (e.g., "NEW", "CONNECTED")
2167///
2168/// # Returns
2169///
2170/// * `Ok(OrStatus)` - The parsed OR connection status variant
2171/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2172///
2173/// # Supported Values
2174///
2175/// - `NEW` - New OR connection initiated
2176/// - `LAUNCHED` - Connection attempt launched
2177/// - `CONNECTED` - Successfully connected to OR
2178/// - `FAILED` - Connection attempt failed
2179/// - `CLOSED` - Connection has been closed
2180fn parse_or_status(s: &str) -> Result<OrStatus, Error> {
2181    match s.to_uppercase().as_str() {
2182        "NEW" => Ok(OrStatus::New),
2183        "LAUNCHED" => Ok(OrStatus::Launched),
2184        "CONNECTED" => Ok(OrStatus::Connected),
2185        "FAILED" => Ok(OrStatus::Failed),
2186        "CLOSED" => Ok(OrStatus::Closed),
2187        _ => Err(Error::Protocol(format!("unknown OR status: {}", s))),
2188    }
2189}
2190
2191/// Parses a guard type string into a [`GuardType`] enum variant.
2192///
2193/// Converts a case-insensitive string representation of a guard node type
2194/// from the Tor control protocol into the corresponding enum variant.
2195///
2196/// # Arguments
2197///
2198/// * `s` - The guard type string to parse (currently only "ENTRY")
2199///
2200/// # Returns
2201///
2202/// * `Ok(GuardType)` - The parsed guard type variant
2203/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2204///
2205/// # Supported Values
2206///
2207/// - `ENTRY` - Entry guard node
2208fn parse_guard_type(s: &str) -> Result<GuardType, Error> {
2209    match s.to_uppercase().as_str() {
2210        "ENTRY" => Ok(GuardType::Entry),
2211        _ => Err(Error::Protocol(format!("unknown guard type: {}", s))),
2212    }
2213}
2214
2215/// Parses a guard status string into a [`GuardStatus`] enum variant.
2216///
2217/// Converts a case-insensitive string representation of a guard node status
2218/// from the Tor control protocol into the corresponding enum variant.
2219///
2220/// # Arguments
2221///
2222/// * `s` - The guard status string to parse (e.g., "NEW", "UP", "DOWN")
2223///
2224/// # Returns
2225///
2226/// * `Ok(GuardStatus)` - The parsed guard status variant
2227/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2228///
2229/// # Supported Values
2230///
2231/// - `NEW` - Guard node newly selected
2232/// - `DROPPED` - Guard node dropped from selection
2233/// - `UP` - Guard node is reachable
2234/// - `DOWN` - Guard node is unreachable
2235/// - `BAD` - Guard node marked as bad
2236/// - `GOOD` - Guard node marked as good
2237fn parse_guard_status(s: &str) -> Result<GuardStatus, Error> {
2238    match s.to_uppercase().as_str() {
2239        "NEW" => Ok(GuardStatus::New),
2240        "DROPPED" => Ok(GuardStatus::Dropped),
2241        "UP" => Ok(GuardStatus::Up),
2242        "DOWN" => Ok(GuardStatus::Down),
2243        "BAD" => Ok(GuardStatus::Bad),
2244        "GOOD" => Ok(GuardStatus::Good),
2245        _ => Err(Error::Protocol(format!("unknown guard status: {}", s))),
2246    }
2247}
2248
2249/// Parses a timeout set type string into a [`TimeoutSetType`] enum variant.
2250///
2251/// Converts a case-insensitive string representation of a circuit build
2252/// timeout set type from the Tor control protocol into the corresponding enum variant.
2253///
2254/// # Arguments
2255///
2256/// * `s` - The timeout set type string to parse (e.g., "COMPUTED", "RESET")
2257///
2258/// # Returns
2259///
2260/// * `Ok(TimeoutSetType)` - The parsed timeout set type variant
2261/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2262///
2263/// # Supported Values
2264///
2265/// - `COMPUTED` - Timeout computed from circuit build times
2266/// - `RESET` - Timeout values have been reset
2267/// - `SUSPENDED` - Timeout learning suspended
2268/// - `DISCARD` - Timeout values discarded
2269/// - `RESUME` - Timeout learning resumed
2270fn parse_timeout_set_type(s: &str) -> Result<TimeoutSetType, Error> {
2271    match s.to_uppercase().as_str() {
2272        "COMPUTED" => Ok(TimeoutSetType::Computed),
2273        "RESET" => Ok(TimeoutSetType::Reset),
2274        "SUSPENDED" => Ok(TimeoutSetType::Suspended),
2275        "DISCARD" => Ok(TimeoutSetType::Discard),
2276        "RESUME" => Ok(TimeoutSetType::Resume),
2277        _ => Err(Error::Protocol(format!("unknown timeout set type: {}", s))),
2278    }
2279}
2280
2281/// Parses a log runlevel string into a [`Runlevel`] enum variant.
2282///
2283/// Converts a case-insensitive string representation of a Tor log severity
2284/// level from the Tor control protocol into the corresponding enum variant.
2285///
2286/// # Arguments
2287///
2288/// * `s` - The runlevel string to parse (e.g., "DEBUG", "INFO", "WARN")
2289///
2290/// # Returns
2291///
2292/// * `Ok(Runlevel)` - The parsed runlevel variant
2293/// * `Err(Error::Protocol)` - If the string doesn't match any known level
2294///
2295/// # Supported Values
2296///
2297/// - `DEBUG` - Debug-level messages (most verbose)
2298/// - `INFO` - Informational messages
2299/// - `NOTICE` - Normal operational messages
2300/// - `WARN` - Warning messages
2301/// - `ERR` - Error messages (most severe)
2302fn parse_runlevel(s: &str) -> Result<Runlevel, Error> {
2303    match s.to_uppercase().as_str() {
2304        "DEBUG" => Ok(Runlevel::Debug),
2305        "INFO" => Ok(Runlevel::Info),
2306        "NOTICE" => Ok(Runlevel::Notice),
2307        "WARN" => Ok(Runlevel::Warn),
2308        "ERR" => Ok(Runlevel::Err),
2309        _ => Err(Error::Protocol(format!("unknown runlevel: {}", s))),
2310    }
2311}
2312
2313/// Parses a signal string into a [`Signal`] enum variant.
2314///
2315/// Converts a case-insensitive string representation of a Tor signal
2316/// from the Tor control protocol into the corresponding enum variant.
2317/// Supports both signal names and their Unix signal equivalents.
2318///
2319/// # Arguments
2320///
2321/// * `s` - The signal string to parse (e.g., "RELOAD", "HUP", "NEWNYM")
2322///
2323/// # Returns
2324///
2325/// * `Ok(Signal)` - The parsed signal variant
2326/// * `Err(Error::Protocol)` - If the string doesn't match any known signal
2327///
2328/// # Supported Values
2329///
2330/// - `RELOAD` or `HUP` - Reload configuration
2331/// - `SHUTDOWN` or `INT` - Controlled shutdown
2332/// - `DUMP` or `USR1` - Dump statistics
2333/// - `DEBUG` or `USR2` - Switch to debug logging
2334/// - `HALT` or `TERM` - Immediate shutdown
2335/// - `NEWNYM` - Request new circuits
2336/// - `CLEARDNSCACHE` - Clear DNS cache
2337/// - `HEARTBEAT` - Trigger heartbeat log
2338/// - `ACTIVE` - Wake from dormant mode
2339/// - `DORMANT` - Enter dormant mode
2340fn parse_signal(s: &str) -> Result<Signal, Error> {
2341    match s.to_uppercase().as_str() {
2342        "RELOAD" | "HUP" => Ok(Signal::Reload),
2343        "SHUTDOWN" | "INT" => Ok(Signal::Shutdown),
2344        "DUMP" | "USR1" => Ok(Signal::Dump),
2345        "DEBUG" | "USR2" => Ok(Signal::Debug),
2346        "HALT" | "TERM" => Ok(Signal::Halt),
2347        "NEWNYM" => Ok(Signal::Newnym),
2348        "CLEARDNSCACHE" => Ok(Signal::ClearDnsCache),
2349        "HEARTBEAT" => Ok(Signal::Heartbeat),
2350        "ACTIVE" => Ok(Signal::Active),
2351        "DORMANT" => Ok(Signal::Dormant),
2352        _ => Err(Error::Protocol(format!("unknown signal: {}", s))),
2353    }
2354}
2355
2356/// Parses a connection type string into a [`ConnectionType`] enum variant.
2357///
2358/// Converts a case-insensitive string representation of a Tor connection type
2359/// from the Tor control protocol into the corresponding enum variant.
2360///
2361/// # Arguments
2362///
2363/// * `s` - The connection type string to parse (e.g., "OR", "DIR", "EXIT")
2364///
2365/// # Returns
2366///
2367/// * `Ok(ConnectionType)` - The parsed connection type variant
2368/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2369///
2370/// # Supported Values
2371///
2372/// - `OR` - Onion Router connection (relay-to-relay)
2373/// - `DIR` - Directory connection
2374/// - `EXIT` - Exit connection to destination
2375fn parse_connection_type(s: &str) -> Result<ConnectionType, Error> {
2376    match s.to_uppercase().as_str() {
2377        "OR" => Ok(ConnectionType::Or),
2378        "DIR" => Ok(ConnectionType::Dir),
2379        "EXIT" => Ok(ConnectionType::Exit),
2380        _ => Err(Error::Protocol(format!("unknown connection type: {}", s))),
2381    }
2382}
2383
2384/// Parses a hidden service descriptor action string into an [`HsDescAction`] enum variant.
2385///
2386/// Converts a case-insensitive string representation of a hidden service
2387/// descriptor action from the Tor control protocol into the corresponding enum variant.
2388///
2389/// # Arguments
2390///
2391/// * `s` - The HS_DESC action string to parse (e.g., "REQUESTED", "RECEIVED")
2392///
2393/// # Returns
2394///
2395/// * `Ok(HsDescAction)` - The parsed action variant
2396/// * `Err(Error::Protocol)` - If the string doesn't match any known action
2397///
2398/// # Supported Values
2399///
2400/// - `REQUESTED` - Descriptor fetch requested
2401/// - `UPLOAD` - Descriptor upload initiated
2402/// - `RECEIVED` - Descriptor successfully received
2403/// - `UPLOADED` - Descriptor successfully uploaded
2404/// - `IGNORE` - Descriptor ignored
2405/// - `FAILED` - Descriptor operation failed
2406/// - `CREATED` - Descriptor created locally
2407fn parse_hs_desc_action(s: &str) -> Result<HsDescAction, Error> {
2408    match s.to_uppercase().as_str() {
2409        "REQUESTED" => Ok(HsDescAction::Requested),
2410        "UPLOAD" => Ok(HsDescAction::Upload),
2411        "RECEIVED" => Ok(HsDescAction::Received),
2412        "UPLOADED" => Ok(HsDescAction::Uploaded),
2413        "IGNORE" => Ok(HsDescAction::Ignore),
2414        "FAILED" => Ok(HsDescAction::Failed),
2415        "CREATED" => Ok(HsDescAction::Created),
2416        _ => Err(Error::Protocol(format!("unknown HS_DESC action: {}", s))),
2417    }
2418}
2419
2420/// Parses a hidden service authentication type string into an [`HsAuth`] enum variant.
2421///
2422/// Converts a case-insensitive string representation of a hidden service
2423/// authentication type from the Tor control protocol into the corresponding enum variant.
2424///
2425/// # Arguments
2426///
2427/// * `s` - The HS auth type string to parse (e.g., "NO_AUTH", "BASIC_AUTH")
2428///
2429/// # Returns
2430///
2431/// * `Ok(HsAuth)` - The parsed authentication type variant
2432/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2433///
2434/// # Supported Values
2435///
2436/// - `NO_AUTH` - No authentication required
2437/// - `BASIC_AUTH` - Basic authentication
2438/// - `STEALTH_AUTH` - Stealth authentication (more private)
2439/// - `UNKNOWN` - Unknown authentication type
2440fn parse_hs_auth(s: &str) -> Result<HsAuth, Error> {
2441    match s.to_uppercase().as_str() {
2442        "NO_AUTH" => Ok(HsAuth::NoAuth),
2443        "BASIC_AUTH" => Ok(HsAuth::BasicAuth),
2444        "STEALTH_AUTH" => Ok(HsAuth::StealthAuth),
2445        "UNKNOWN" => Ok(HsAuth::Unknown),
2446        _ => Err(Error::Protocol(format!("unknown HS auth type: {}", s))),
2447    }
2448}
2449
2450/// Parses a hidden service descriptor failure reason string into an [`HsDescReason`] enum variant.
2451///
2452/// Converts a case-insensitive string representation of a hidden service
2453/// descriptor failure reason from the Tor control protocol into the corresponding enum variant.
2454///
2455/// # Arguments
2456///
2457/// * `s` - The HS_DESC reason string to parse (e.g., "NOT_FOUND", "BAD_DESC")
2458///
2459/// # Returns
2460///
2461/// * `Ok(HsDescReason)` - The parsed reason variant
2462/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2463///
2464/// # Supported Values
2465///
2466/// - `BAD_DESC` - Descriptor was malformed or invalid
2467/// - `QUERY_REJECTED` - Query was rejected by HSDir
2468/// - `UPLOAD_REJECTED` - Upload was rejected by HSDir
2469/// - `NOT_FOUND` - Descriptor not found
2470/// - `QUERY_NO_HSDIR` - No HSDir available for query
2471/// - `QUERY_RATE_LIMITED` - Query rate limited
2472/// - `UNEXPECTED` - Unexpected error occurred
2473fn parse_hs_desc_reason(s: &str) -> Result<HsDescReason, Error> {
2474    match s.to_uppercase().as_str() {
2475        "BAD_DESC" => Ok(HsDescReason::BadDesc),
2476        "QUERY_REJECTED" => Ok(HsDescReason::QueryRejected),
2477        "UPLOAD_REJECTED" => Ok(HsDescReason::UploadRejected),
2478        "NOT_FOUND" => Ok(HsDescReason::NotFound),
2479        "QUERY_NO_HSDIR" => Ok(HsDescReason::QueryNoHsDir),
2480        "QUERY_RATE_LIMITED" => Ok(HsDescReason::QueryRateLimited),
2481        "UNEXPECTED" => Ok(HsDescReason::Unexpected),
2482        _ => Err(Error::Protocol(format!("unknown HS_DESC reason: {}", s))),
2483    }
2484}
2485
2486/// Parses a circuit purpose string into a [`CircPurpose`] enum variant.
2487///
2488/// Converts a case-insensitive string representation of a circuit purpose
2489/// from the Tor control protocol into the corresponding enum variant.
2490///
2491/// # Arguments
2492///
2493/// * `s` - The circuit purpose string to parse (e.g., "GENERAL", "HS_CLIENT_REND")
2494///
2495/// # Returns
2496///
2497/// * `Ok(CircPurpose)` - The parsed circuit purpose variant
2498/// * `Err(Error::Protocol)` - If the string doesn't match any known purpose
2499///
2500/// # Supported Values
2501///
2502/// - `GENERAL` - General-purpose circuit for user traffic
2503/// - `HS_CLIENT_INTRO` - Hidden service client introduction circuit
2504/// - `HS_CLIENT_REND` - Hidden service client rendezvous circuit
2505/// - `HS_SERVICE_INTRO` - Hidden service introduction point circuit
2506/// - `HS_SERVICE_REND` - Hidden service rendezvous circuit
2507/// - `TESTING` - Circuit for testing purposes
2508/// - `CONTROLLER` - Circuit created by controller
2509/// - `MEASURE_TIMEOUT` - Circuit for measuring build timeouts
2510/// - `HS_VANGUARDS` - Vanguard circuit for hidden services
2511/// - `PATH_BIAS_TESTING` - Circuit for path bias testing
2512/// - `CIRCUIT_PADDING` - Circuit for padding purposes
2513fn parse_circ_purpose(s: &str) -> Result<CircPurpose, Error> {
2514    match s.to_uppercase().as_str() {
2515        "GENERAL" => Ok(CircPurpose::General),
2516        "HS_CLIENT_INTRO" => Ok(CircPurpose::HsClientIntro),
2517        "HS_CLIENT_REND" => Ok(CircPurpose::HsClientRend),
2518        "HS_SERVICE_INTRO" => Ok(CircPurpose::HsServiceIntro),
2519        "HS_SERVICE_REND" => Ok(CircPurpose::HsServiceRend),
2520        "TESTING" => Ok(CircPurpose::Testing),
2521        "CONTROLLER" => Ok(CircPurpose::Controller),
2522        "MEASURE_TIMEOUT" => Ok(CircPurpose::MeasureTimeout),
2523        "HS_VANGUARDS" => Ok(CircPurpose::HsVanguards),
2524        "PATH_BIAS_TESTING" => Ok(CircPurpose::PathBiasTesting),
2525        "CIRCUIT_PADDING" => Ok(CircPurpose::CircuitPadding),
2526        _ => Err(Error::Protocol(format!("unknown circuit purpose: {}", s))),
2527    }
2528}
2529
2530/// Parses a hidden service state string into a [`HiddenServiceState`] enum variant.
2531///
2532/// Converts a case-insensitive string representation of a hidden service
2533/// circuit state from the Tor control protocol into the corresponding enum variant.
2534///
2535/// # Arguments
2536///
2537/// * `s` - The HS state string to parse (e.g., "HSCI_CONNECTING", "HSCR_JOINED")
2538///
2539/// # Returns
2540///
2541/// * `Ok(HiddenServiceState)` - The parsed hidden service state variant
2542/// * `Err(Error::Protocol)` - If the string doesn't match any known state
2543///
2544/// # Supported Values
2545///
2546/// Client Introduction (HSCI):
2547/// - `HSCI_CONNECTING` - Connecting to introduction point
2548/// - `HSCI_INTRO_SENT` - Introduction sent to service
2549/// - `HSCI_DONE` - Introduction complete
2550///
2551/// Client Rendezvous (HSCR):
2552/// - `HSCR_CONNECTING` - Connecting to rendezvous point
2553/// - `HSCR_ESTABLISHED_IDLE` - Rendezvous established, idle
2554/// - `HSCR_ESTABLISHED_WAITING` - Rendezvous established, waiting
2555/// - `HSCR_JOINED` - Rendezvous joined with service
2556///
2557/// Service Introduction (HSSI):
2558/// - `HSSI_CONNECTING` - Service connecting to intro point
2559/// - `HSSI_ESTABLISHED` - Service intro point established
2560///
2561/// Service Rendezvous (HSSR):
2562/// - `HSSR_CONNECTING` - Service connecting to rendezvous
2563/// - `HSSR_JOINED` - Service joined rendezvous
2564fn parse_hs_state(s: &str) -> Result<HiddenServiceState, Error> {
2565    match s.to_uppercase().as_str() {
2566        "HSCI_CONNECTING" => Ok(HiddenServiceState::HsciConnecting),
2567        "HSCI_INTRO_SENT" => Ok(HiddenServiceState::HsciIntroSent),
2568        "HSCI_DONE" => Ok(HiddenServiceState::HsciDone),
2569        "HSCR_CONNECTING" => Ok(HiddenServiceState::HscrConnecting),
2570        "HSCR_ESTABLISHED_IDLE" => Ok(HiddenServiceState::HscrEstablishedIdle),
2571        "HSCR_ESTABLISHED_WAITING" => Ok(HiddenServiceState::HscrEstablishedWaiting),
2572        "HSCR_JOINED" => Ok(HiddenServiceState::HscrJoined),
2573        "HSSI_CONNECTING" => Ok(HiddenServiceState::HssiConnecting),
2574        "HSSI_ESTABLISHED" => Ok(HiddenServiceState::HssiEstablished),
2575        "HSSR_CONNECTING" => Ok(HiddenServiceState::HssrConnecting),
2576        "HSSR_JOINED" => Ok(HiddenServiceState::HssrJoined),
2577        _ => Err(Error::Protocol(format!("unknown HS state: {}", s))),
2578    }
2579}
2580
2581/// Parses a circuit closure reason string into a [`CircClosureReason`] enum variant.
2582///
2583/// Converts a case-insensitive string representation of a circuit closure reason
2584/// from the Tor control protocol into the corresponding enum variant.
2585///
2586/// # Arguments
2587///
2588/// * `s` - The circuit closure reason string to parse (e.g., "FINISHED", "TIMEOUT")
2589///
2590/// # Returns
2591///
2592/// * `Ok(CircClosureReason)` - The parsed closure reason variant
2593/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2594///
2595/// # Supported Values
2596///
2597/// - `NONE` - No reason given
2598/// - `TORPROTOCOL` - Tor protocol violation
2599/// - `INTERNAL` - Internal error
2600/// - `REQUESTED` - Closure requested by client
2601/// - `HIBERNATING` - Relay is hibernating
2602/// - `RESOURCELIMIT` - Resource limit reached
2603/// - `CONNECTFAILED` - Connection to relay failed
2604/// - `OR_IDENTITY` - OR identity mismatch
2605/// - `OR_CONN_CLOSED` - OR connection closed
2606/// - `FINISHED` - Circuit finished normally
2607/// - `TIMEOUT` - Circuit timed out
2608/// - `DESTROYED` - Circuit was destroyed
2609/// - `NOPATH` - No path available
2610/// - `NOSUCHSERVICE` - Hidden service not found
2611/// - `MEASUREMENT_EXPIRED` - Measurement circuit expired
2612/// - `IP_NOW_REDUNDANT` - Introduction point now redundant
2613fn parse_circ_closure_reason(s: &str) -> Result<CircClosureReason, Error> {
2614    match s.to_uppercase().as_str() {
2615        "NONE" => Ok(CircClosureReason::None),
2616        "TORPROTOCOL" => Ok(CircClosureReason::TorProtocol),
2617        "INTERNAL" => Ok(CircClosureReason::Internal),
2618        "REQUESTED" => Ok(CircClosureReason::Requested),
2619        "HIBERNATING" => Ok(CircClosureReason::Hibernating),
2620        "RESOURCELIMIT" => Ok(CircClosureReason::ResourceLimit),
2621        "CONNECTFAILED" => Ok(CircClosureReason::ConnectFailed),
2622        "OR_IDENTITY" => Ok(CircClosureReason::OrIdentity),
2623        "OR_CONN_CLOSED" => Ok(CircClosureReason::OrConnClosed),
2624        "FINISHED" => Ok(CircClosureReason::Finished),
2625        "TIMEOUT" => Ok(CircClosureReason::Timeout),
2626        "DESTROYED" => Ok(CircClosureReason::Destroyed),
2627        "NOPATH" => Ok(CircClosureReason::NoPath),
2628        "NOSUCHSERVICE" => Ok(CircClosureReason::NoSuchService),
2629        "MEASUREMENT_EXPIRED" => Ok(CircClosureReason::MeasurementExpired),
2630        "IP_NOW_REDUNDANT" => Ok(CircClosureReason::IpNowRedundant),
2631        _ => Err(Error::Protocol(format!(
2632            "unknown circuit closure reason: {}",
2633            s
2634        ))),
2635    }
2636}
2637
2638/// Parses a stream closure reason string into a [`StreamClosureReason`] enum variant.
2639///
2640/// Converts a case-insensitive string representation of a stream closure reason
2641/// from the Tor control protocol into the corresponding enum variant.
2642///
2643/// # Arguments
2644///
2645/// * `s` - The stream closure reason string to parse (e.g., "DONE", "TIMEOUT")
2646///
2647/// # Returns
2648///
2649/// * `Ok(StreamClosureReason)` - The parsed closure reason variant
2650/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2651///
2652/// # Supported Values
2653///
2654/// - `MISC` - Miscellaneous error
2655/// - `RESOLVEFAILED` - DNS resolution failed
2656/// - `CONNECTREFUSED` - Connection refused by destination
2657/// - `EXITPOLICY` - Exit policy rejected connection
2658/// - `DESTROY` - Circuit was destroyed
2659/// - `DONE` - Stream completed normally
2660/// - `TIMEOUT` - Stream timed out
2661/// - `NOROUTE` - No route to destination
2662/// - `HIBERNATING` - Relay is hibernating
2663/// - `INTERNAL` - Internal error
2664/// - `RESOURCELIMIT` - Resource limit reached
2665/// - `CONNRESET` - Connection reset
2666/// - `TORPROTOCOL` - Tor protocol violation
2667/// - `NOTDIRECTORY` - Not a directory server
2668/// - `END` - Stream ended
2669/// - `PRIVATE_ADDR` - Private address rejected
2670fn parse_stream_closure_reason(s: &str) -> Result<StreamClosureReason, Error> {
2671    match s.to_uppercase().as_str() {
2672        "MISC" => Ok(StreamClosureReason::Misc),
2673        "RESOLVEFAILED" => Ok(StreamClosureReason::ResolveFailed),
2674        "CONNECTREFUSED" => Ok(StreamClosureReason::ConnectRefused),
2675        "EXITPOLICY" => Ok(StreamClosureReason::ExitPolicy),
2676        "DESTROY" => Ok(StreamClosureReason::Destroy),
2677        "DONE" => Ok(StreamClosureReason::Done),
2678        "TIMEOUT" => Ok(StreamClosureReason::Timeout),
2679        "NOROUTE" => Ok(StreamClosureReason::NoRoute),
2680        "HIBERNATING" => Ok(StreamClosureReason::Hibernating),
2681        "INTERNAL" => Ok(StreamClosureReason::Internal),
2682        "RESOURCELIMIT" => Ok(StreamClosureReason::ResourceLimit),
2683        "CONNRESET" => Ok(StreamClosureReason::ConnReset),
2684        "TORPROTOCOL" => Ok(StreamClosureReason::TorProtocol),
2685        "NOTDIRECTORY" => Ok(StreamClosureReason::NotDirectory),
2686        "END" => Ok(StreamClosureReason::End),
2687        "PRIVATE_ADDR" => Ok(StreamClosureReason::PrivateAddr),
2688        _ => Err(Error::Protocol(format!(
2689            "unknown stream closure reason: {}",
2690            s
2691        ))),
2692    }
2693}
2694
2695/// Parses a stream source string into a [`StreamSource`] enum variant.
2696///
2697/// Converts a case-insensitive string representation of a stream source
2698/// from the Tor control protocol into the corresponding enum variant.
2699///
2700/// # Arguments
2701///
2702/// * `s` - The stream source string to parse (e.g., "CACHE", "EXIT")
2703///
2704/// # Returns
2705///
2706/// * `Ok(StreamSource)` - The parsed stream source variant
2707/// * `Err(Error::Protocol)` - If the string doesn't match any known source
2708///
2709/// # Supported Values
2710///
2711/// - `CACHE` - Data from cache
2712/// - `EXIT` - Data from exit node
2713fn parse_stream_source(s: &str) -> Result<StreamSource, Error> {
2714    match s.to_uppercase().as_str() {
2715        "CACHE" => Ok(StreamSource::Cache),
2716        "EXIT" => Ok(StreamSource::Exit),
2717        _ => Err(Error::Protocol(format!("unknown stream source: {}", s))),
2718    }
2719}
2720
2721/// Parses a stream purpose string into a [`StreamPurpose`] enum variant.
2722///
2723/// Converts a case-insensitive string representation of a stream purpose
2724/// from the Tor control protocol into the corresponding enum variant.
2725///
2726/// # Arguments
2727///
2728/// * `s` - The stream purpose string to parse (e.g., "USER", "DIR_FETCH")
2729///
2730/// # Returns
2731///
2732/// * `Ok(StreamPurpose)` - The parsed stream purpose variant
2733/// * `Err(Error::Protocol)` - If the string doesn't match any known purpose
2734///
2735/// # Supported Values
2736///
2737/// - `DIR_FETCH` - Directory fetch operation
2738/// - `DIR_UPLOAD` - Directory upload operation
2739/// - `DNS_REQUEST` - DNS resolution request
2740/// - `DIRPORT_TEST` - Directory port testing
2741/// - `USER` - User-initiated stream
2742fn parse_stream_purpose(s: &str) -> Result<StreamPurpose, Error> {
2743    match s.to_uppercase().as_str() {
2744        "DIR_FETCH" => Ok(StreamPurpose::DirFetch),
2745        "DIR_UPLOAD" => Ok(StreamPurpose::DirUpload),
2746        "DNS_REQUEST" => Ok(StreamPurpose::DnsRequest),
2747        "DIRPORT_TEST" => Ok(StreamPurpose::DirportTest),
2748        "USER" => Ok(StreamPurpose::User),
2749        _ => Err(Error::Protocol(format!("unknown stream purpose: {}", s))),
2750    }
2751}
2752
2753/// Parses an OR connection closure reason string into an [`OrClosureReason`] enum variant.
2754///
2755/// Converts a case-insensitive string representation of an OR connection
2756/// closure reason from the Tor control protocol into the corresponding enum variant.
2757///
2758/// # Arguments
2759///
2760/// * `s` - The OR closure reason string to parse (e.g., "DONE", "TIMEOUT")
2761///
2762/// # Returns
2763///
2764/// * `Ok(OrClosureReason)` - The parsed closure reason variant
2765/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2766///
2767/// # Supported Values
2768///
2769/// - `DONE` - Connection completed normally
2770/// - `CONNECTREFUSED` - Connection refused
2771/// - `IDENTITY` - Identity verification failed
2772/// - `CONNECTRESET` - Connection reset
2773/// - `TIMEOUT` - Connection timed out
2774/// - `NOROUTE` - No route to relay
2775/// - `IOERROR` - I/O error occurred
2776/// - `RESOURCELIMIT` - Resource limit reached
2777/// - `MISC` - Miscellaneous error
2778/// - `PT_MISSING` - Pluggable transport missing
2779fn parse_or_closure_reason(s: &str) -> Result<OrClosureReason, Error> {
2780    match s.to_uppercase().as_str() {
2781        "DONE" => Ok(OrClosureReason::Done),
2782        "CONNECTREFUSED" => Ok(OrClosureReason::ConnectRefused),
2783        "IDENTITY" => Ok(OrClosureReason::Identity),
2784        "CONNECTRESET" => Ok(OrClosureReason::ConnectReset),
2785        "TIMEOUT" => Ok(OrClosureReason::Timeout),
2786        "NOROUTE" => Ok(OrClosureReason::NoRoute),
2787        "IOERROR" => Ok(OrClosureReason::IoError),
2788        "RESOURCELIMIT" => Ok(OrClosureReason::ResourceLimit),
2789        "MISC" => Ok(OrClosureReason::Misc),
2790        "PT_MISSING" => Ok(OrClosureReason::PtMissing),
2791        _ => Err(Error::Protocol(format!("unknown OR closure reason: {}", s))),
2792    }
2793}
2794
2795/// Parses a comma-separated string of circuit build flags into a vector of [`CircBuildFlag`].
2796///
2797/// Converts a comma-separated string of circuit build flags from the Tor
2798/// control protocol into a vector of enum variants. Unknown flags are silently ignored.
2799///
2800/// # Arguments
2801///
2802/// * `s` - The comma-separated build flags string (e.g., "ONEHOP_TUNNEL,IS_INTERNAL")
2803///
2804/// # Returns
2805///
2806/// A vector of recognized [`CircBuildFlag`] variants. Unknown flags are filtered out.
2807///
2808/// # Supported Values
2809///
2810/// - `ONEHOP_TUNNEL` - Single-hop circuit (for directory connections)
2811/// - `IS_INTERNAL` - Internal circuit (not for user traffic)
2812/// - `NEED_CAPACITY` - Circuit needs high-capacity relays
2813/// - `NEED_UPTIME` - Circuit needs high-uptime relays
2814fn parse_build_flags(s: &str) -> Vec<CircBuildFlag> {
2815    s.split(',')
2816        .filter_map(|f| match f.to_uppercase().as_str() {
2817            "ONEHOP_TUNNEL" => Some(CircBuildFlag::OneHopTunnel),
2818            "IS_INTERNAL" => Some(CircBuildFlag::IsInternal),
2819            "NEED_CAPACITY" => Some(CircBuildFlag::NeedCapacity),
2820            "NEED_UPTIME" => Some(CircBuildFlag::NeedUptime),
2821            _ => None,
2822        })
2823        .collect()
2824}
2825
2826/// Parses a circuit path string into a vector of relay fingerprint and nickname pairs.
2827///
2828/// Converts a comma-separated circuit path string from the Tor control protocol
2829/// into a vector of tuples containing relay fingerprints and optional nicknames.
2830///
2831/// # Arguments
2832///
2833/// * `s` - The circuit path string (e.g., "$FP1~nick1,$FP2=nick2,$FP3")
2834///
2835/// # Returns
2836///
2837/// A vector of tuples where each tuple contains:
2838/// - The relay fingerprint (with leading `$` stripped)
2839/// - An optional nickname (if present after `~` or `=`)
2840///
2841/// # Format
2842///
2843/// Each relay in the path can be specified as:
2844/// - `$FINGERPRINT~nickname` - Fingerprint with nickname (tilde separator)
2845/// - `$FINGERPRINT=nickname` - Fingerprint with nickname (equals separator)
2846/// - `$FINGERPRINT` - Fingerprint only
2847/// - `FINGERPRINT` - Fingerprint without `$` prefix
2848fn parse_circuit_path(s: &str) -> Vec<(String, Option<String>)> {
2849    s.split(',')
2850        .map(|relay| {
2851            let relay = relay.trim_start_matches('$');
2852            if let Some((fp, nick)) = relay.split_once('~') {
2853                (fp.to_string(), Some(nick.to_string()))
2854            } else if let Some((fp, nick)) = relay.split_once('=') {
2855                (fp.to_string(), Some(nick.to_string()))
2856            } else {
2857                (relay.to_string(), None)
2858            }
2859        })
2860        .collect()
2861}
2862
2863/// Parses a relay endpoint string into a fingerprint and optional nickname.
2864///
2865/// Converts a relay endpoint string from the Tor control protocol into a tuple
2866/// containing the relay fingerprint and optional nickname.
2867///
2868/// # Arguments
2869///
2870/// * `s` - The relay endpoint string (e.g., "$FP~nickname" or "$FP=nickname")
2871///
2872/// # Returns
2873///
2874/// A tuple containing:
2875/// - The relay fingerprint (with leading `$` stripped)
2876/// - An optional nickname (if present after `~` or `=`)
2877///
2878/// # Format
2879///
2880/// The relay can be specified as:
2881/// - `$FINGERPRINT~nickname` - Fingerprint with nickname (tilde separator)
2882/// - `$FINGERPRINT=nickname` - Fingerprint with nickname (equals separator)
2883/// - `$FINGERPRINT` - Fingerprint only
2884/// - `FINGERPRINT` - Fingerprint without `$` prefix
2885fn parse_relay_endpoint(s: &str) -> (String, Option<String>) {
2886    let s = s.trim_start_matches('$');
2887    if let Some((fp, nick)) = s.split_once('~') {
2888        (fp.to_string(), Some(nick.to_string()))
2889    } else if let Some((fp, nick)) = s.split_once('=') {
2890        (fp.to_string(), Some(nick.to_string()))
2891    } else {
2892        (s.to_string(), None)
2893    }
2894}
2895
2896/// Parses a target address string into a host and port tuple.
2897///
2898/// Converts a target address string (host:port format) from the Tor control
2899/// protocol into a tuple containing the host and port number.
2900///
2901/// # Arguments
2902///
2903/// * `target` - The target address string (e.g., "example.com:80" or "[::1]:443")
2904///
2905/// # Returns
2906///
2907/// * `Ok((host, port))` - The parsed host string and port number
2908/// * `Err(Error::Protocol)` - If the port cannot be parsed as a valid u16
2909///
2910/// # Format
2911///
2912/// Supports both IPv4 and IPv6 addresses:
2913/// - `hostname:port` - Standard hostname with port
2914/// - `ip:port` - IPv4 address with port
2915/// - `[ipv6]:port` - IPv6 address with port (brackets preserved in host)
2916///
2917/// If no port is specified, returns port 0.
2918fn parse_target(target: &str) -> Result<(String, u16), Error> {
2919    if let Some(colon_pos) = target.rfind(':') {
2920        let host = target[..colon_pos].to_string();
2921        let port_str = &target[colon_pos + 1..];
2922        let port: u16 = port_str
2923            .parse()
2924            .map_err(|_| Error::Protocol(format!("invalid port: {}", port_str)))?;
2925        Ok((host, port))
2926    } else {
2927        Ok((target.to_string(), 0))
2928    }
2929}
2930
2931/// Parses an ISO 8601 timestamp string into a UTC [`DateTime`].
2932///
2933/// Converts a timestamp string in ISO 8601 format from the Tor control
2934/// protocol into a [`DateTime<Utc>`] value.
2935///
2936/// # Arguments
2937///
2938/// * `s` - The timestamp string (e.g., "2024-01-15 12:30:45" or "2024-01-15T12:30:45.123")
2939///
2940/// # Returns
2941///
2942/// * `Ok(DateTime<Utc>)` - The parsed UTC datetime
2943/// * `Err(Error::Protocol)` - If the timestamp format is invalid
2944///
2945/// # Supported Formats
2946///
2947/// - `YYYY-MM-DD HH:MM:SS` - Standard format
2948/// - `YYYY-MM-DDTHH:MM:SS` - ISO 8601 with T separator
2949/// - `YYYY-MM-DD HH:MM:SS.fff` - With fractional seconds
2950/// - `YYYY-MM-DDTHH:MM:SS.fff` - ISO 8601 with fractional seconds
2951fn parse_iso_timestamp(s: &str) -> Result<DateTime<Utc>, Error> {
2952    let s = s.replace('T', " ");
2953    let formats = ["%Y-%m-%d %H:%M:%S%.f", "%Y-%m-%d %H:%M:%S"];
2954    for fmt in &formats {
2955        if let Ok(dt) = chrono::NaiveDateTime::parse_from_str(&s, fmt) {
2956            return Ok(DateTime::from_naive_utc_and_offset(dt, Utc));
2957        }
2958    }
2959    Err(Error::Protocol(format!("invalid timestamp: {}", s)))
2960}
2961
2962/// Parses a local timestamp string into a local [`DateTime`].
2963///
2964/// Converts a timestamp string from the Tor control protocol into a
2965/// [`DateTime<Local>`] value using the system's local timezone offset.
2966///
2967/// # Arguments
2968///
2969/// * `s` - The timestamp string (e.g., "2024-01-15 12:30:45")
2970///
2971/// # Returns
2972///
2973/// * `Ok(DateTime<Local>)` - The parsed local datetime
2974/// * `Err(Error::Protocol)` - If the timestamp format is invalid
2975///
2976/// # Supported Formats
2977///
2978/// - `YYYY-MM-DD HH:MM:SS` - Standard format
2979/// - `YYYY-MM-DD HH:MM:SS.fff` - With fractional seconds
2980///
2981/// # Note
2982///
2983/// The timestamp is interpreted as being in the local timezone at the
2984/// time of parsing. The current local timezone offset is applied.
2985fn parse_local_timestamp(s: &str) -> Result<DateTime<Local>, Error> {
2986    let formats = ["%Y-%m-%d %H:%M:%S", "%Y-%m-%d %H:%M:%S%.f"];
2987    for fmt in &formats {
2988        if let Ok(dt) = chrono::NaiveDateTime::parse_from_str(s, fmt) {
2989            return Ok(DateTime::from_naive_utc_and_offset(
2990                dt,
2991                *Local::now().offset(),
2992            ));
2993        }
2994    }
2995    Err(Error::Protocol(format!("invalid local timestamp: {}", s)))
2996}
2997
2998/// Parses a UTC timestamp string into a UTC [`DateTime`].
2999///
3000/// This is an alias for [`parse_iso_timestamp`] that explicitly indicates
3001/// the timestamp should be interpreted as UTC.
3002///
3003/// # Arguments
3004///
3005/// * `s` - The timestamp string in ISO 8601 format
3006///
3007/// # Returns
3008///
3009/// * `Ok(DateTime<Utc>)` - The parsed UTC datetime
3010/// * `Err(Error::Protocol)` - If the timestamp format is invalid
3011///
3012/// # See Also
3013///
3014/// - [`parse_iso_timestamp`] - The underlying implementation
3015fn parse_utc_timestamp(s: &str) -> Result<DateTime<Utc>, Error> {
3016    parse_iso_timestamp(s)
3017}
3018
3019/// Enumeration of all parsed event types.
3020///
3021/// This enum provides a unified way to handle different event types
3022/// through pattern matching. Use [`ParsedEvent::parse`] to convert
3023/// raw event data into the appropriate variant.
3024///
3025/// # Parsing Events
3026///
3027/// Events are parsed from raw control protocol messages:
3028///
3029/// ```rust,ignore
3030/// use stem_rs::events::ParsedEvent;
3031///
3032/// let event = ParsedEvent::parse("BW", "1024 2048", None)?;
3033/// match event {
3034///     ParsedEvent::Bandwidth(bw) => {
3035///         println!("Read: {}, Written: {}", bw.read, bw.written);
3036///     }
3037///     _ => {}
3038/// }
3039/// ```
3040///
3041/// # Unknown Events
3042///
3043/// Events that don't match a known type are captured as
3044/// [`ParsedEvent::Unknown`], preserving the raw content for
3045/// debugging or custom handling.
3046///
3047/// # Display
3048///
3049/// All variants implement [`Display`](std::fmt::Display) to reconstruct
3050/// a human-readable representation of the event.
3051#[derive(Debug, Clone)]
3052pub enum ParsedEvent {
3053    /// Aggregate bandwidth event (BW).
3054    Bandwidth(BandwidthEvent),
3055    /// Log message event (DEBUG, INFO, NOTICE, WARN, ERR).
3056    Log(LogEvent),
3057    /// Circuit status change event (CIRC).
3058    Circuit(CircuitEvent),
3059    /// Stream status change event (STREAM).
3060    Stream(StreamEvent),
3061    /// OR connection status change event (ORCONN).
3062    OrConn(OrConnEvent),
3063    /// Address mapping event (ADDRMAP).
3064    AddrMap(AddrMapEvent),
3065    /// Circuit build timeout change event (BUILDTIMEOUT_SET).
3066    BuildTimeoutSet(BuildTimeoutSetEvent),
3067    /// Guard relay status change event (GUARD).
3068    Guard(GuardEvent),
3069    /// New descriptor available event (NEWDESC).
3070    NewDesc(NewDescEvent),
3071    /// Signal received event (SIGNAL).
3072    Signal(SignalEvent),
3073    /// Status event (STATUS_GENERAL, STATUS_CLIENT, STATUS_SERVER).
3074    Status(StatusEvent),
3075    /// Configuration changed event (CONF_CHANGED).
3076    ConfChanged(ConfChangedEvent),
3077    /// Network liveness event (NETWORK_LIVENESS).
3078    NetworkLiveness(NetworkLivenessEvent),
3079    /// Per-circuit bandwidth event (CIRC_BW).
3080    CircuitBandwidth(CircuitBandwidthEvent),
3081    /// Per-connection bandwidth event (CONN_BW).
3082    ConnectionBandwidth(ConnectionBandwidthEvent),
3083    /// Hidden service descriptor event (HS_DESC).
3084    HsDesc(HsDescEvent),
3085    /// Unknown or unrecognized event type.
3086    Unknown {
3087        /// The event type string.
3088        event_type: String,
3089        /// The raw event content.
3090        content: String,
3091    },
3092}
3093
3094impl ParsedEvent {
3095    /// Parses raw event data into a typed event.
3096    ///
3097    /// # Arguments
3098    ///
3099    /// * `event_type` - The event type keyword (e.g., "BW", "CIRC")
3100    /// * `content` - The event content after the type
3101    /// * `lines` - Optional multi-line content for events like CONF_CHANGED
3102    ///
3103    /// # Supported Event Types
3104    ///
3105    /// - `BW` - Bandwidth events
3106    /// - `DEBUG`, `INFO`, `NOTICE`, `WARN`, `ERR` - Log events
3107    /// - `CIRC` - Circuit events
3108    /// - `STREAM` - Stream events
3109    /// - `ORCONN` - OR connection events
3110    /// - `ADDRMAP` - Address map events
3111    /// - `BUILDTIMEOUT_SET` - Build timeout events
3112    /// - `GUARD` - Guard events
3113    /// - `NEWDESC` - New descriptor events
3114    /// - `SIGNAL` - Signal events
3115    /// - `STATUS_GENERAL`, `STATUS_CLIENT`, `STATUS_SERVER` - Status events
3116    /// - `CONF_CHANGED` - Configuration change events
3117    /// - `NETWORK_LIVENESS` - Network liveness events
3118    /// - `CIRC_BW` - Circuit bandwidth events
3119    /// - `CONN_BW` - Connection bandwidth events
3120    /// - `HS_DESC` - Hidden service descriptor events
3121    ///
3122    /// # Errors
3123    ///
3124    /// Returns [`Error::Protocol`] if the event content is malformed.
3125    /// Unknown event types are returned as [`ParsedEvent::Unknown`]
3126    /// rather than causing an error.
3127    ///
3128    /// # Example
3129    ///
3130    /// ```rust,ignore
3131    /// use stem_rs::events::ParsedEvent;
3132    ///
3133    /// // Parse a bandwidth event
3134    /// let event = ParsedEvent::parse("BW", "100 200", None)?;
3135    ///
3136    /// // Parse a circuit event
3137    /// let event = ParsedEvent::parse("CIRC", "1 BUILT $ABC...=relay", None)?;
3138    ///
3139    /// // Unknown events are captured, not rejected
3140    /// let event = ParsedEvent::parse("FUTURE_EVENT", "data", None)?;
3141    /// assert!(matches!(event, ParsedEvent::Unknown { .. }));
3142    /// ```
3143    pub fn parse(event_type: &str, content: &str, lines: Option<&[String]>) -> Result<Self, Error> {
3144        match event_type.to_uppercase().as_str() {
3145            "BW" => Ok(ParsedEvent::Bandwidth(BandwidthEvent::parse(content)?)),
3146            "DEBUG" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Debug, content)?)),
3147            "INFO" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Info, content)?)),
3148            "NOTICE" => Ok(ParsedEvent::Log(LogEvent::parse(
3149                Runlevel::Notice,
3150                content,
3151            )?)),
3152            "WARN" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Warn, content)?)),
3153            "ERR" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Err, content)?)),
3154            "CIRC" => Ok(ParsedEvent::Circuit(CircuitEvent::parse(content)?)),
3155            "STREAM" => Ok(ParsedEvent::Stream(StreamEvent::parse(content)?)),
3156            "ORCONN" => Ok(ParsedEvent::OrConn(OrConnEvent::parse(content)?)),
3157            "ADDRMAP" => Ok(ParsedEvent::AddrMap(AddrMapEvent::parse(content)?)),
3158            "BUILDTIMEOUT_SET" => Ok(ParsedEvent::BuildTimeoutSet(BuildTimeoutSetEvent::parse(
3159                content,
3160            )?)),
3161            "GUARD" => Ok(ParsedEvent::Guard(GuardEvent::parse(content)?)),
3162            "NEWDESC" => Ok(ParsedEvent::NewDesc(NewDescEvent::parse(content)?)),
3163            "SIGNAL" => Ok(ParsedEvent::Signal(SignalEvent::parse(content)?)),
3164            "STATUS_GENERAL" => Ok(ParsedEvent::Status(StatusEvent::parse(
3165                StatusType::General,
3166                content,
3167            )?)),
3168            "STATUS_CLIENT" => Ok(ParsedEvent::Status(StatusEvent::parse(
3169                StatusType::Client,
3170                content,
3171            )?)),
3172            "STATUS_SERVER" => Ok(ParsedEvent::Status(StatusEvent::parse(
3173                StatusType::Server,
3174                content,
3175            )?)),
3176            "CONF_CHANGED" => {
3177                let lines = lines.unwrap_or(&[]);
3178                Ok(ParsedEvent::ConfChanged(ConfChangedEvent::parse(lines)?))
3179            }
3180            "NETWORK_LIVENESS" => Ok(ParsedEvent::NetworkLiveness(NetworkLivenessEvent::parse(
3181                content,
3182            )?)),
3183            "CIRC_BW" => Ok(ParsedEvent::CircuitBandwidth(CircuitBandwidthEvent::parse(
3184                content,
3185            )?)),
3186            "CONN_BW" => Ok(ParsedEvent::ConnectionBandwidth(
3187                ConnectionBandwidthEvent::parse(content)?,
3188            )),
3189            "HS_DESC" => Ok(ParsedEvent::HsDesc(HsDescEvent::parse(content)?)),
3190            _ => Ok(ParsedEvent::Unknown {
3191                event_type: event_type.to_string(),
3192                content: content.to_string(),
3193            }),
3194        }
3195    }
3196
3197    /// Returns the event type string for this event.
3198    ///
3199    /// This returns the canonical event type keyword as used in
3200    /// `SETEVENTS` commands and event responses.
3201    ///
3202    /// # Example
3203    ///
3204    /// ```rust,ignore
3205    /// let event = ParsedEvent::parse("BW", "100 200", None)?;
3206    /// assert_eq!(event.event_type(), "BW");
3207    /// ```
3208    pub fn event_type(&self) -> &str {
3209        match self {
3210            ParsedEvent::Bandwidth(_) => "BW",
3211            ParsedEvent::Log(e) => match e.runlevel {
3212                Runlevel::Debug => "DEBUG",
3213                Runlevel::Info => "INFO",
3214                Runlevel::Notice => "NOTICE",
3215                Runlevel::Warn => "WARN",
3216                Runlevel::Err => "ERR",
3217            },
3218            ParsedEvent::Circuit(_) => "CIRC",
3219            ParsedEvent::Stream(_) => "STREAM",
3220            ParsedEvent::OrConn(_) => "ORCONN",
3221            ParsedEvent::AddrMap(_) => "ADDRMAP",
3222            ParsedEvent::BuildTimeoutSet(_) => "BUILDTIMEOUT_SET",
3223            ParsedEvent::Guard(_) => "GUARD",
3224            ParsedEvent::NewDesc(_) => "NEWDESC",
3225            ParsedEvent::Signal(_) => "SIGNAL",
3226            ParsedEvent::Status(e) => match e.status_type {
3227                StatusType::General => "STATUS_GENERAL",
3228                StatusType::Client => "STATUS_CLIENT",
3229                StatusType::Server => "STATUS_SERVER",
3230            },
3231            ParsedEvent::ConfChanged(_) => "CONF_CHANGED",
3232            ParsedEvent::NetworkLiveness(_) => "NETWORK_LIVENESS",
3233            ParsedEvent::CircuitBandwidth(_) => "CIRC_BW",
3234            ParsedEvent::ConnectionBandwidth(_) => "CONN_BW",
3235            ParsedEvent::HsDesc(_) => "HS_DESC",
3236            ParsedEvent::Unknown { event_type, .. } => event_type,
3237        }
3238    }
3239}
3240
3241impl std::fmt::Display for ParsedEvent {
3242    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3243        match self {
3244            ParsedEvent::Bandwidth(e) => write!(f, "650 BW {} {}", e.read, e.written),
3245            ParsedEvent::Log(e) => write!(f, "650 {} {}", e.runlevel, e.message),
3246            ParsedEvent::Circuit(e) => write!(f, "650 CIRC {} {}", e.id, e.status),
3247            ParsedEvent::Stream(e) => write!(f, "650 STREAM {} {}", e.id, e.status),
3248            ParsedEvent::OrConn(e) => write!(f, "650 ORCONN {} {}", e.target, e.status),
3249            ParsedEvent::AddrMap(e) => {
3250                write!(
3251                    f,
3252                    "650 ADDRMAP {} {}",
3253                    e.hostname,
3254                    e.destination.as_deref().unwrap_or("<error>")
3255                )
3256            }
3257            ParsedEvent::BuildTimeoutSet(e) => write!(f, "650 BUILDTIMEOUT_SET {:?}", e.set_type),
3258            ParsedEvent::Guard(e) => {
3259                write!(f, "650 GUARD {} {} {}", e.guard_type, e.endpoint, e.status)
3260            }
3261            ParsedEvent::NewDesc(e) => {
3262                let relays: Vec<String> = e
3263                    .relays
3264                    .iter()
3265                    .map(|(fp, nick)| match nick {
3266                        Some(n) => format!("{}~{}", fp, n),
3267                        None => fp.clone(),
3268                    })
3269                    .collect();
3270                write!(f, "650 NEWDESC {}", relays.join(" "))
3271            }
3272            ParsedEvent::Signal(e) => write!(f, "650 SIGNAL {}", e.signal),
3273            ParsedEvent::Status(e) => write!(
3274                f,
3275                "650 STATUS_{} {} {}",
3276                e.status_type, e.runlevel, e.action
3277            ),
3278            ParsedEvent::ConfChanged(e) => {
3279                let changes: Vec<String> = e
3280                    .changed
3281                    .iter()
3282                    .map(|(k, v)| format!("{}={}", k, v.join(",")))
3283                    .collect();
3284                write!(f, "650 CONF_CHANGED {}", changes.join(" "))
3285            }
3286            ParsedEvent::NetworkLiveness(e) => write!(f, "650 NETWORK_LIVENESS {}", e.status),
3287            ParsedEvent::CircuitBandwidth(e) => {
3288                write!(f, "650 CIRC_BW {} {} {}", e.id, e.read, e.written)
3289            }
3290            ParsedEvent::ConnectionBandwidth(e) => write!(
3291                f,
3292                "650 CONN_BW {} {} {} {}",
3293                e.id, e.conn_type, e.read, e.written
3294            ),
3295            ParsedEvent::HsDesc(e) => write!(f, "650 HS_DESC {} {}", e.action, e.address),
3296            ParsedEvent::Unknown {
3297                event_type,
3298                content,
3299            } => write!(f, "650 {} {}", event_type, content),
3300        }
3301    }
3302}
3303
3304#[cfg(test)]
3305mod tests {
3306    use super::*;
3307    use chrono::{Datelike, Timelike};
3308
3309    #[test]
3310    fn test_bandwidth_event() {
3311        let event = BandwidthEvent::parse("15 25").unwrap();
3312        assert_eq!(event.read, 15);
3313        assert_eq!(event.written, 25);
3314    }
3315
3316    #[test]
3317    fn test_bandwidth_event_zero() {
3318        let event = BandwidthEvent::parse("0 0").unwrap();
3319        assert_eq!(event.read, 0);
3320        assert_eq!(event.written, 0);
3321    }
3322
3323    #[test]
3324    fn test_bandwidth_event_invalid_missing_values() {
3325        assert!(BandwidthEvent::parse("").is_err());
3326        assert!(BandwidthEvent::parse("15").is_err());
3327    }
3328
3329    #[test]
3330    fn test_bandwidth_event_invalid_non_numeric() {
3331        assert!(BandwidthEvent::parse("x 25").is_err());
3332        assert!(BandwidthEvent::parse("15 y").is_err());
3333    }
3334
3335    #[test]
3336    fn test_log_event() {
3337        let event = LogEvent::parse(Runlevel::Debug, "test message").unwrap();
3338        assert_eq!(event.runlevel, Runlevel::Debug);
3339        assert_eq!(event.message, "test message");
3340    }
3341
3342    #[test]
3343    fn test_log_event_debug() {
3344        let event = LogEvent::parse(
3345            Runlevel::Debug,
3346            "connection_edge_process_relay_cell(): Got an extended cell! Yay.",
3347        )
3348        .unwrap();
3349        assert_eq!(event.runlevel, Runlevel::Debug);
3350        assert_eq!(
3351            event.message,
3352            "connection_edge_process_relay_cell(): Got an extended cell! Yay."
3353        );
3354    }
3355
3356    #[test]
3357    fn test_log_event_info() {
3358        let event = LogEvent::parse(
3359            Runlevel::Info,
3360            "circuit_finish_handshake(): Finished building circuit hop:",
3361        )
3362        .unwrap();
3363        assert_eq!(event.runlevel, Runlevel::Info);
3364    }
3365
3366    #[test]
3367    fn test_log_event_warn() {
3368        let event = LogEvent::parse(Runlevel::Warn, "a multi-line\nwarning message").unwrap();
3369        assert_eq!(event.runlevel, Runlevel::Warn);
3370        assert_eq!(event.message, "a multi-line\nwarning message");
3371    }
3372
3373    #[test]
3374    fn test_circuit_event_launched() {
3375        let content = "7 LAUNCHED BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL TIME_CREATED=2012-11-08T16:48:38.417238";
3376        let event = CircuitEvent::parse(content).unwrap();
3377        assert_eq!(event.id.0, "7");
3378        assert_eq!(event.status, CircStatus::Launched);
3379        assert!(event.path.is_empty());
3380        assert_eq!(event.build_flags, Some(vec![CircBuildFlag::NeedCapacity]));
3381        assert_eq!(event.purpose, Some(CircPurpose::General));
3382        assert!(event.created.is_some());
3383        assert_eq!(event.reason, None);
3384        assert_eq!(event.remote_reason, None);
3385        assert_eq!(event.socks_username, None);
3386        assert_eq!(event.socks_password, None);
3387    }
3388
3389    #[test]
3390    fn test_circuit_event_extended() {
3391        let content = "7 EXTENDED $999A226EBED397F331B612FE1E4CFAE5C1F201BA=piyaz BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL";
3392        let event = CircuitEvent::parse(content).unwrap();
3393        assert_eq!(event.id.0, "7");
3394        assert_eq!(event.status, CircStatus::Extended);
3395        assert_eq!(event.path.len(), 1);
3396        assert_eq!(event.path[0].0, "999A226EBED397F331B612FE1E4CFAE5C1F201BA");
3397        assert_eq!(event.path[0].1, Some("piyaz".to_string()));
3398    }
3399
3400    #[test]
3401    fn test_circuit_event_failed() {
3402        let content = "5 FAILED $E57A476CD4DFBD99B4EE52A100A58610AD6E80B9=ergebnisoffen BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL REASON=DESTROYED REMOTE_REASON=OR_CONN_CLOSED";
3403        let event = CircuitEvent::parse(content).unwrap();
3404        assert_eq!(event.id.0, "5");
3405        assert_eq!(event.status, CircStatus::Failed);
3406        assert_eq!(event.reason, Some(CircClosureReason::Destroyed));
3407        assert_eq!(event.remote_reason, Some(CircClosureReason::OrConnClosed));
3408    }
3409
3410    #[test]
3411    fn test_circuit_event_with_credentials() {
3412        let content = r#"7 LAUNCHED SOCKS_USERNAME="It's a me, Mario!" SOCKS_PASSWORD="your princess is in another castle""#;
3413        let event = CircuitEvent::parse(content).unwrap();
3414        assert_eq!(event.id.0, "7");
3415        assert_eq!(event.status, CircStatus::Launched);
3416        assert_eq!(event.socks_username, Some("It's a me, Mario!".to_string()));
3417        assert_eq!(
3418            event.socks_password,
3419            Some("your princess is in another castle".to_string())
3420        );
3421    }
3422
3423    #[test]
3424    fn test_circuit_event_launched_old_format() {
3425        let content = "4 LAUNCHED";
3426        let event = CircuitEvent::parse(content).unwrap();
3427        assert_eq!(event.id.0, "4");
3428        assert_eq!(event.status, CircStatus::Launched);
3429        assert!(event.path.is_empty());
3430        assert_eq!(event.build_flags, None);
3431        assert_eq!(event.purpose, None);
3432    }
3433
3434    #[test]
3435    fn test_circuit_event_extended_old_format() {
3436        let content = "$E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone";
3437        let event = CircuitEvent::parse(&format!("1 EXTENDED {}", content)).unwrap();
3438        assert_eq!(event.id.0, "1");
3439        assert_eq!(event.status, CircStatus::Extended);
3440    }
3441
3442    #[test]
3443    fn test_circuit_event_built_old_format() {
3444        let content =
3445            "1 BUILT $E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone,PrivacyRepublic14";
3446        let event = CircuitEvent::parse(content).unwrap();
3447        assert_eq!(event.id.0, "1");
3448        assert_eq!(event.status, CircStatus::Built);
3449    }
3450
3451    #[test]
3452    fn test_stream_event_new() {
3453        let content = "18 NEW 0 encrypted.google.com:443 SOURCE_ADDR=127.0.0.1:47849 PURPOSE=USER";
3454        let event = StreamEvent::parse(content).unwrap();
3455        assert_eq!(event.id.0, "18");
3456        assert_eq!(event.status, StreamStatus::New);
3457        assert_eq!(event.circuit_id, None);
3458        assert_eq!(event.target_host, "encrypted.google.com");
3459        assert_eq!(event.target_port, 443);
3460        assert_eq!(event.source_addr, Some("127.0.0.1:47849".to_string()));
3461        assert_eq!(event.purpose, Some(StreamPurpose::User));
3462    }
3463
3464    #[test]
3465    fn test_stream_event_sentconnect() {
3466        let content = "18 SENTCONNECT 26 encrypted.google.com:443";
3467        let event = StreamEvent::parse(content).unwrap();
3468        assert_eq!(event.id.0, "18");
3469        assert_eq!(event.status, StreamStatus::SentConnect);
3470        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3471        assert_eq!(event.target_host, "encrypted.google.com");
3472        assert_eq!(event.target_port, 443);
3473        assert_eq!(event.source_addr, None);
3474        assert_eq!(event.purpose, None);
3475    }
3476
3477    #[test]
3478    fn test_stream_event_remap() {
3479        let content = "18 REMAP 26 74.125.227.129:443 SOURCE=EXIT";
3480        let event = StreamEvent::parse(content).unwrap();
3481        assert_eq!(event.id.0, "18");
3482        assert_eq!(event.status, StreamStatus::Remap);
3483        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3484        assert_eq!(event.target_host, "74.125.227.129");
3485        assert_eq!(event.target_port, 443);
3486        assert_eq!(event.source, Some(StreamSource::Exit));
3487    }
3488
3489    #[test]
3490    fn test_stream_event_succeeded() {
3491        let content = "18 SUCCEEDED 26 74.125.227.129:443";
3492        let event = StreamEvent::parse(content).unwrap();
3493        assert_eq!(event.id.0, "18");
3494        assert_eq!(event.status, StreamStatus::Succeeded);
3495        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3496        assert_eq!(event.target_host, "74.125.227.129");
3497        assert_eq!(event.target_port, 443);
3498    }
3499
3500    #[test]
3501    fn test_stream_event_closed() {
3502        let content = "21 CLOSED 26 74.125.227.129:443 REASON=CONNRESET";
3503        let event = StreamEvent::parse(content).unwrap();
3504        assert_eq!(event.status, StreamStatus::Closed);
3505        assert_eq!(event.reason, Some(StreamClosureReason::ConnReset));
3506    }
3507
3508    #[test]
3509    fn test_stream_event_closed_done() {
3510        let content = "25 CLOSED 26 199.7.52.72:80 REASON=DONE";
3511        let event = StreamEvent::parse(content).unwrap();
3512        assert_eq!(event.id.0, "25");
3513        assert_eq!(event.status, StreamStatus::Closed);
3514        assert_eq!(event.reason, Some(StreamClosureReason::Done));
3515    }
3516
3517    #[test]
3518    fn test_stream_event_dir_fetch() {
3519        let content = "14 NEW 0 176.28.51.238.$649F2D0ACF418F7CFC6539AB2257EB2D5297BAFA.exit:443 SOURCE_ADDR=(Tor_internal):0 PURPOSE=DIR_FETCH";
3520        let event = StreamEvent::parse(content).unwrap();
3521        assert_eq!(event.id.0, "14");
3522        assert_eq!(event.status, StreamStatus::New);
3523        assert_eq!(event.circuit_id, None);
3524        assert_eq!(
3525            event.target_host,
3526            "176.28.51.238.$649F2D0ACF418F7CFC6539AB2257EB2D5297BAFA.exit"
3527        );
3528        assert_eq!(event.target_port, 443);
3529        assert_eq!(event.source_addr, Some("(Tor_internal):0".to_string()));
3530        assert_eq!(event.purpose, Some(StreamPurpose::DirFetch));
3531    }
3532
3533    #[test]
3534    fn test_stream_event_dns_request() {
3535        let content = "1113 NEW 0 www.google.com:0 SOURCE_ADDR=127.0.0.1:15297 PURPOSE=DNS_REQUEST";
3536        let event = StreamEvent::parse(content).unwrap();
3537        assert_eq!(event.id.0, "1113");
3538        assert_eq!(event.status, StreamStatus::New);
3539        assert_eq!(event.target_host, "www.google.com");
3540        assert_eq!(event.target_port, 0);
3541        assert_eq!(event.purpose, Some(StreamPurpose::DnsRequest));
3542    }
3543
3544    #[test]
3545    fn test_orconn_event_closed() {
3546        let content = "$A1130635A0CDA6F60C276FBF6994EFBD4ECADAB1~tama CLOSED REASON=DONE";
3547        let event = OrConnEvent::parse(content).unwrap();
3548        assert_eq!(
3549            event.target,
3550            "$A1130635A0CDA6F60C276FBF6994EFBD4ECADAB1~tama"
3551        );
3552        assert_eq!(event.status, OrStatus::Closed);
3553        assert_eq!(event.reason, Some(OrClosureReason::Done));
3554        assert_eq!(event.num_circuits, None);
3555        assert_eq!(event.id, None);
3556    }
3557
3558    #[test]
3559    fn test_orconn_event_connected() {
3560        let content = "127.0.0.1:9000 CONNECTED NCIRCS=20 ID=18";
3561        let event = OrConnEvent::parse(content).unwrap();
3562        assert_eq!(event.target, "127.0.0.1:9000");
3563        assert_eq!(event.status, OrStatus::Connected);
3564        assert_eq!(event.num_circuits, Some(20));
3565        assert_eq!(event.id, Some("18".to_string()));
3566        assert_eq!(event.reason, None);
3567    }
3568
3569    #[test]
3570    fn test_orconn_event_launched() {
3571        let content = "$7ED90E2833EE38A75795BA9237B0A4560E51E1A0=GreenDragon LAUNCHED";
3572        let event = OrConnEvent::parse(content).unwrap();
3573        assert_eq!(
3574            event.target,
3575            "$7ED90E2833EE38A75795BA9237B0A4560E51E1A0=GreenDragon"
3576        );
3577        assert_eq!(event.status, OrStatus::Launched);
3578        assert_eq!(event.reason, None);
3579        assert_eq!(event.num_circuits, None);
3580    }
3581
3582    #[test]
3583    fn test_addrmap_event() {
3584        let content =
3585            r#"www.atagar.com 75.119.206.243 "2012-11-19 00:50:13" EXPIRES="2012-11-19 08:50:13""#;
3586        let event = AddrMapEvent::parse(content).unwrap();
3587        assert_eq!(event.hostname, "www.atagar.com");
3588        assert_eq!(event.destination, Some("75.119.206.243".to_string()));
3589        assert!(event.expiry.is_some());
3590        assert_eq!(event.error, None);
3591        assert!(event.utc_expiry.is_some());
3592    }
3593
3594    #[test]
3595    fn test_addrmap_event_no_expiration() {
3596        let content = "www.atagar.com 75.119.206.243 NEVER";
3597        let event = AddrMapEvent::parse(content).unwrap();
3598        assert_eq!(event.hostname, "www.atagar.com");
3599        assert_eq!(event.destination, Some("75.119.206.243".to_string()));
3600        assert_eq!(event.expiry, None);
3601        assert_eq!(event.utc_expiry, None);
3602    }
3603
3604    #[test]
3605    fn test_addrmap_event_error() {
3606        let content = r#"www.atagar.com <error> "2012-11-19 00:50:13" error=yes EXPIRES="2012-11-19 08:50:13""#;
3607        let event = AddrMapEvent::parse(content).unwrap();
3608        assert_eq!(event.hostname, "www.atagar.com");
3609        assert_eq!(event.destination, None);
3610        assert_eq!(event.error, Some("yes".to_string()));
3611    }
3612
3613    #[test]
3614    fn test_addrmap_event_cached_yes() {
3615        let content = r#"example.com 192.0.43.10 "2013-04-03 22:31:22" EXPIRES="2013-04-03 20:31:22" CACHED="YES""#;
3616        let event = AddrMapEvent::parse(content).unwrap();
3617        assert_eq!(event.hostname, "example.com");
3618        assert_eq!(event.cached, Some(true));
3619    }
3620
3621    #[test]
3622    fn test_addrmap_event_cached_no() {
3623        let content = r#"example.com 192.0.43.10 "2013-04-03 22:29:11" EXPIRES="2013-04-03 20:29:11" CACHED="NO""#;
3624        let event = AddrMapEvent::parse(content).unwrap();
3625        assert_eq!(event.hostname, "example.com");
3626        assert_eq!(event.cached, Some(false));
3627    }
3628
3629    #[test]
3630    fn test_build_timeout_set_event() {
3631        let content = "COMPUTED TOTAL_TIMES=124 TIMEOUT_MS=9019 XM=1375 ALPHA=0.855662 CUTOFF_QUANTILE=0.800000 TIMEOUT_RATE=0.137097 CLOSE_MS=21850 CLOSE_RATE=0.072581";
3632        let event = BuildTimeoutSetEvent::parse(content).unwrap();
3633        assert_eq!(event.set_type, TimeoutSetType::Computed);
3634        assert_eq!(event.total_times, Some(124));
3635        assert_eq!(event.timeout, Some(9019));
3636        assert_eq!(event.xm, Some(1375));
3637        assert!((event.alpha.unwrap() - 0.855662).abs() < 0.0001);
3638        assert!((event.quantile.unwrap() - 0.8).abs() < 0.0001);
3639        assert!((event.timeout_rate.unwrap() - 0.137097).abs() < 0.0001);
3640        assert_eq!(event.close_timeout, Some(21850));
3641        assert!((event.close_rate.unwrap() - 0.072581).abs() < 0.0001);
3642    }
3643
3644    #[test]
3645    fn test_build_timeout_set_event_invalid_total_times() {
3646        let content = "COMPUTED TOTAL_TIMES=one_twenty_four TIMEOUT_MS=9019";
3647        assert!(BuildTimeoutSetEvent::parse(content).is_err());
3648    }
3649
3650    #[test]
3651    fn test_build_timeout_set_event_invalid_quantile() {
3652        let content = "COMPUTED TOTAL_TIMES=124 CUTOFF_QUANTILE=zero_point_eight";
3653        assert!(BuildTimeoutSetEvent::parse(content).is_err());
3654    }
3655
3656    #[test]
3657    fn test_guard_event_new() {
3658        let content = "ENTRY $36B5DBA788246E8369DBAF58577C6BC044A9A374 NEW";
3659        let event = GuardEvent::parse(content).unwrap();
3660        assert_eq!(event.guard_type, GuardType::Entry);
3661        assert_eq!(event.endpoint, "$36B5DBA788246E8369DBAF58577C6BC044A9A374");
3662        assert_eq!(
3663            event.endpoint_fingerprint,
3664            "36B5DBA788246E8369DBAF58577C6BC044A9A374"
3665        );
3666        assert_eq!(event.endpoint_nickname, None);
3667        assert_eq!(event.status, GuardStatus::New);
3668    }
3669
3670    #[test]
3671    fn test_guard_event_good() {
3672        let content = "ENTRY $5D0034A368E0ABAF663D21847E1C9B6CFA09752A GOOD";
3673        let event = GuardEvent::parse(content).unwrap();
3674        assert_eq!(event.guard_type, GuardType::Entry);
3675        assert_eq!(
3676            event.endpoint_fingerprint,
3677            "5D0034A368E0ABAF663D21847E1C9B6CFA09752A"
3678        );
3679        assert_eq!(event.endpoint_nickname, None);
3680        assert_eq!(event.status, GuardStatus::Good);
3681    }
3682
3683    #[test]
3684    fn test_guard_event_bad() {
3685        let content = "ENTRY $5D0034A368E0ABAF663D21847E1C9B6CFA09752A=caerSidi BAD";
3686        let event = GuardEvent::parse(content).unwrap();
3687        assert_eq!(
3688            event.endpoint_fingerprint,
3689            "5D0034A368E0ABAF663D21847E1C9B6CFA09752A"
3690        );
3691        assert_eq!(event.endpoint_nickname, Some("caerSidi".to_string()));
3692        assert_eq!(event.status, GuardStatus::Bad);
3693    }
3694
3695    #[test]
3696    fn test_newdesc_event_single() {
3697        let content = "$B3FA3110CC6F42443F039220C134CBD2FC4F0493=Sakura";
3698        let event = NewDescEvent::parse(content).unwrap();
3699        assert_eq!(event.relays.len(), 1);
3700        assert_eq!(
3701            event.relays[0].0,
3702            "B3FA3110CC6F42443F039220C134CBD2FC4F0493"
3703        );
3704        assert_eq!(event.relays[0].1, Some("Sakura".to_string()));
3705    }
3706
3707    #[test]
3708    fn test_newdesc_event_multiple() {
3709        let content = "$BE938957B2CA5F804B3AFC2C1EE6673170CDBBF8=Moonshine $B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF~Unnamed";
3710        let event = NewDescEvent::parse(content).unwrap();
3711        assert_eq!(event.relays.len(), 2);
3712        assert_eq!(
3713            event.relays[0].0,
3714            "BE938957B2CA5F804B3AFC2C1EE6673170CDBBF8"
3715        );
3716        assert_eq!(event.relays[0].1, Some("Moonshine".to_string()));
3717        assert_eq!(
3718            event.relays[1].0,
3719            "B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF"
3720        );
3721        assert_eq!(event.relays[1].1, Some("Unnamed".to_string()));
3722    }
3723
3724    #[test]
3725    fn test_signal_event() {
3726        let event = SignalEvent::parse("DEBUG").unwrap();
3727        assert_eq!(event.signal, Signal::Debug);
3728
3729        let event = SignalEvent::parse("DUMP").unwrap();
3730        assert_eq!(event.signal, Signal::Dump);
3731    }
3732
3733    #[test]
3734    fn test_signal_event_all_signals() {
3735        assert_eq!(SignalEvent::parse("RELOAD").unwrap().signal, Signal::Reload);
3736        assert_eq!(SignalEvent::parse("HUP").unwrap().signal, Signal::Reload);
3737        assert_eq!(
3738            SignalEvent::parse("SHUTDOWN").unwrap().signal,
3739            Signal::Shutdown
3740        );
3741        assert_eq!(SignalEvent::parse("INT").unwrap().signal, Signal::Shutdown);
3742        assert_eq!(SignalEvent::parse("DUMP").unwrap().signal, Signal::Dump);
3743        assert_eq!(SignalEvent::parse("USR1").unwrap().signal, Signal::Dump);
3744        assert_eq!(SignalEvent::parse("DEBUG").unwrap().signal, Signal::Debug);
3745        assert_eq!(SignalEvent::parse("USR2").unwrap().signal, Signal::Debug);
3746        assert_eq!(SignalEvent::parse("HALT").unwrap().signal, Signal::Halt);
3747        assert_eq!(SignalEvent::parse("TERM").unwrap().signal, Signal::Halt);
3748        assert_eq!(SignalEvent::parse("NEWNYM").unwrap().signal, Signal::Newnym);
3749        assert_eq!(
3750            SignalEvent::parse("CLEARDNSCACHE").unwrap().signal,
3751            Signal::ClearDnsCache
3752        );
3753        assert_eq!(
3754            SignalEvent::parse("HEARTBEAT").unwrap().signal,
3755            Signal::Heartbeat
3756        );
3757        assert_eq!(SignalEvent::parse("ACTIVE").unwrap().signal, Signal::Active);
3758        assert_eq!(
3759            SignalEvent::parse("DORMANT").unwrap().signal,
3760            Signal::Dormant
3761        );
3762    }
3763
3764    #[test]
3765    fn test_status_event() {
3766        let content = "NOTICE CONSENSUS_ARRIVED";
3767        let event = StatusEvent::parse(StatusType::General, content).unwrap();
3768        assert_eq!(event.status_type, StatusType::General);
3769        assert_eq!(event.runlevel, Runlevel::Notice);
3770        assert_eq!(event.action, "CONSENSUS_ARRIVED");
3771    }
3772
3773    #[test]
3774    fn test_status_event_enough_dir_info() {
3775        let content = "NOTICE ENOUGH_DIR_INFO";
3776        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3777        assert_eq!(event.status_type, StatusType::Client);
3778        assert_eq!(event.runlevel, Runlevel::Notice);
3779        assert_eq!(event.action, "ENOUGH_DIR_INFO");
3780    }
3781
3782    #[test]
3783    fn test_status_event_circuit_established() {
3784        let content = "NOTICE CIRCUIT_ESTABLISHED";
3785        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3786        assert_eq!(event.status_type, StatusType::Client);
3787        assert_eq!(event.runlevel, Runlevel::Notice);
3788        assert_eq!(event.action, "CIRCUIT_ESTABLISHED");
3789    }
3790
3791    #[test]
3792    fn test_status_event_with_args() {
3793        let content = "NOTICE BOOTSTRAP PROGRESS=53 TAG=loading_descriptors SUMMARY=\"Loading relay descriptors\"";
3794        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3795        assert_eq!(event.status_type, StatusType::Client);
3796        assert_eq!(event.action, "BOOTSTRAP");
3797        assert_eq!(event.arguments.get("PROGRESS"), Some(&"53".to_string()));
3798        assert_eq!(
3799            event.arguments.get("TAG"),
3800            Some(&"loading_descriptors".to_string())
3801        );
3802        assert_eq!(
3803            event.arguments.get("SUMMARY"),
3804            Some(&"Loading relay descriptors".to_string())
3805        );
3806    }
3807
3808    #[test]
3809    fn test_status_event_bootstrap_stuck() {
3810        let content = "WARN BOOTSTRAP PROGRESS=80 TAG=conn_or SUMMARY=\"Connecting to the Tor network\" WARNING=\"Network is unreachable\" REASON=NOROUTE COUNT=5 RECOMMENDATION=warn";
3811        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3812        assert_eq!(event.status_type, StatusType::Client);
3813        assert_eq!(event.runlevel, Runlevel::Warn);
3814        assert_eq!(event.action, "BOOTSTRAP");
3815        assert_eq!(event.arguments.get("PROGRESS"), Some(&"80".to_string()));
3816        assert_eq!(event.arguments.get("TAG"), Some(&"conn_or".to_string()));
3817        assert_eq!(
3818            event.arguments.get("WARNING"),
3819            Some(&"Network is unreachable".to_string())
3820        );
3821        assert_eq!(event.arguments.get("REASON"), Some(&"NOROUTE".to_string()));
3822        assert_eq!(event.arguments.get("COUNT"), Some(&"5".to_string()));
3823        assert_eq!(
3824            event.arguments.get("RECOMMENDATION"),
3825            Some(&"warn".to_string())
3826        );
3827    }
3828
3829    #[test]
3830    fn test_status_event_bootstrap_done() {
3831        let content = "NOTICE BOOTSTRAP PROGRESS=100 TAG=done SUMMARY=\"Done\"";
3832        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3833        assert_eq!(event.arguments.get("PROGRESS"), Some(&"100".to_string()));
3834        assert_eq!(event.arguments.get("TAG"), Some(&"done".to_string()));
3835        assert_eq!(event.arguments.get("SUMMARY"), Some(&"Done".to_string()));
3836    }
3837
3838    #[test]
3839    fn test_status_event_server_check_reachability() {
3840        let content = "NOTICE CHECKING_REACHABILITY ORADDRESS=71.35.143.230:9050";
3841        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3842        assert_eq!(event.status_type, StatusType::Server);
3843        assert_eq!(event.runlevel, Runlevel::Notice);
3844        assert_eq!(event.action, "CHECKING_REACHABILITY");
3845        assert_eq!(
3846            event.arguments.get("ORADDRESS"),
3847            Some(&"71.35.143.230:9050".to_string())
3848        );
3849    }
3850
3851    #[test]
3852    fn test_status_event_dns_timeout() {
3853        let content =
3854            "NOTICE NAMESERVER_STATUS NS=205.171.3.25 STATUS=DOWN ERR=\"request timed out.\"";
3855        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3856        assert_eq!(event.action, "NAMESERVER_STATUS");
3857        assert_eq!(event.arguments.get("NS"), Some(&"205.171.3.25".to_string()));
3858        assert_eq!(event.arguments.get("STATUS"), Some(&"DOWN".to_string()));
3859        assert_eq!(
3860            event.arguments.get("ERR"),
3861            Some(&"request timed out.".to_string())
3862        );
3863    }
3864
3865    #[test]
3866    fn test_status_event_dns_down() {
3867        let content = "WARN NAMESERVER_ALL_DOWN";
3868        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3869        assert_eq!(event.status_type, StatusType::Server);
3870        assert_eq!(event.runlevel, Runlevel::Warn);
3871        assert_eq!(event.action, "NAMESERVER_ALL_DOWN");
3872    }
3873
3874    #[test]
3875    fn test_status_event_dns_up() {
3876        let content = "NOTICE NAMESERVER_STATUS NS=205.171.3.25 STATUS=UP";
3877        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3878        assert_eq!(event.action, "NAMESERVER_STATUS");
3879        assert_eq!(event.arguments.get("STATUS"), Some(&"UP".to_string()));
3880    }
3881
3882    #[test]
3883    fn test_conf_changed_event() {
3884        let lines = vec![
3885            "ExitNodes=caerSidi".to_string(),
3886            "ExitPolicy".to_string(),
3887            "MaxCircuitDirtiness=20".to_string(),
3888        ];
3889        let event = ConfChangedEvent::parse(&lines).unwrap();
3890        assert_eq!(
3891            event.changed.get("ExitNodes"),
3892            Some(&vec!["caerSidi".to_string()])
3893        );
3894        assert_eq!(
3895            event.changed.get("MaxCircuitDirtiness"),
3896            Some(&vec!["20".to_string()])
3897        );
3898        assert_eq!(event.unset, vec!["ExitPolicy".to_string()]);
3899    }
3900
3901    #[test]
3902    fn test_conf_changed_event_multiple_values() {
3903        let lines = vec![
3904            "ExitPolicy=accept 34.3.4.5".to_string(),
3905            "ExitPolicy=accept 3.4.53.3".to_string(),
3906            "MaxCircuitDirtiness=20".to_string(),
3907        ];
3908        let event = ConfChangedEvent::parse(&lines).unwrap();
3909        assert_eq!(
3910            event.changed.get("ExitPolicy"),
3911            Some(&vec![
3912                "accept 34.3.4.5".to_string(),
3913                "accept 3.4.53.3".to_string()
3914            ])
3915        );
3916        assert_eq!(
3917            event.changed.get("MaxCircuitDirtiness"),
3918            Some(&vec!["20".to_string()])
3919        );
3920        assert!(event.unset.is_empty());
3921    }
3922
3923    #[test]
3924    fn test_network_liveness_event() {
3925        let event = NetworkLivenessEvent::parse("UP").unwrap();
3926        assert_eq!(event.status, "UP");
3927
3928        let event = NetworkLivenessEvent::parse("DOWN").unwrap();
3929        assert_eq!(event.status, "DOWN");
3930    }
3931
3932    #[test]
3933    fn test_network_liveness_event_other_status() {
3934        let event = NetworkLivenessEvent::parse("OTHER_STATUS key=value").unwrap();
3935        assert_eq!(event.status, "OTHER_STATUS");
3936    }
3937
3938    #[test]
3939    fn test_circuit_bandwidth_event() {
3940        let content = "ID=11 READ=272 WRITTEN=817";
3941        let event = CircuitBandwidthEvent::parse(content).unwrap();
3942        assert_eq!(event.id.0, "11");
3943        assert_eq!(event.read, 272);
3944        assert_eq!(event.written, 817);
3945        assert_eq!(event.time, None);
3946    }
3947
3948    #[test]
3949    fn test_circuit_bandwidth_event_with_time() {
3950        let content = "ID=11 READ=272 WRITTEN=817 TIME=2012-12-06T13:51:11.433755";
3951        let event = CircuitBandwidthEvent::parse(content).unwrap();
3952        assert_eq!(event.id.0, "11");
3953        assert!(event.time.is_some());
3954    }
3955
3956    #[test]
3957    fn test_circuit_bandwidth_event_invalid_written() {
3958        let content = "ID=11 READ=272 WRITTEN=817.7";
3959        assert!(CircuitBandwidthEvent::parse(content).is_err());
3960    }
3961
3962    #[test]
3963    fn test_circuit_bandwidth_event_missing_id() {
3964        let content = "READ=272 WRITTEN=817";
3965        assert!(CircuitBandwidthEvent::parse(content).is_err());
3966    }
3967
3968    #[test]
3969    fn test_connection_bandwidth_event() {
3970        let content = "ID=11 TYPE=DIR READ=272 WRITTEN=817";
3971        let event = ConnectionBandwidthEvent::parse(content).unwrap();
3972        assert_eq!(event.id, "11");
3973        assert_eq!(event.conn_type, ConnectionType::Dir);
3974        assert_eq!(event.read, 272);
3975        assert_eq!(event.written, 817);
3976    }
3977
3978    #[test]
3979    fn test_connection_bandwidth_event_invalid_written() {
3980        let content = "ID=11 TYPE=DIR READ=272 WRITTEN=817.7";
3981        assert!(ConnectionBandwidthEvent::parse(content).is_err());
3982    }
3983
3984    #[test]
3985    fn test_connection_bandwidth_event_missing_id() {
3986        let content = "TYPE=DIR READ=272 WRITTEN=817";
3987        assert!(ConnectionBandwidthEvent::parse(content).is_err());
3988    }
3989
3990    #[test]
3991    fn test_hs_desc_event() {
3992        let content = "REQUESTED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243=europa1 b3oeducbhjmbqmgw2i3jtz4fekkrinwj";
3993        let event = HsDescEvent::parse(content).unwrap();
3994        assert_eq!(event.action, HsDescAction::Requested);
3995        assert_eq!(event.address, "ajhb7kljbiru65qo");
3996        assert_eq!(event.authentication, Some(HsAuth::NoAuth));
3997        assert_eq!(
3998            event.directory,
3999            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243=europa1".to_string())
4000        );
4001        assert_eq!(
4002            event.directory_fingerprint,
4003            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4004        );
4005        assert_eq!(event.directory_nickname, Some("europa1".to_string()));
4006        assert_eq!(
4007            event.descriptor_id,
4008            Some("b3oeducbhjmbqmgw2i3jtz4fekkrinwj".to_string())
4009        );
4010        assert_eq!(event.reason, None);
4011    }
4012
4013    #[test]
4014    fn test_hs_desc_event_no_desc_id() {
4015        let content =
4016            "REQUESTED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243";
4017        let event = HsDescEvent::parse(content).unwrap();
4018        assert_eq!(
4019            event.directory,
4020            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4021        );
4022        assert_eq!(
4023            event.directory_fingerprint,
4024            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4025        );
4026        assert_eq!(event.directory_nickname, None);
4027        assert_eq!(event.descriptor_id, None);
4028        assert_eq!(event.reason, None);
4029    }
4030
4031    #[test]
4032    fn test_hs_desc_event_not_found() {
4033        let content = "REQUESTED ajhb7kljbiru65qo NO_AUTH UNKNOWN";
4034        let event = HsDescEvent::parse(content).unwrap();
4035        assert_eq!(event.directory, None);
4036        assert_eq!(event.directory_fingerprint, None);
4037        assert_eq!(event.directory_nickname, None);
4038        assert_eq!(event.descriptor_id, None);
4039        assert_eq!(event.reason, None);
4040    }
4041
4042    #[test]
4043    fn test_hs_desc_event_failed() {
4044        let content = "FAILED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243 b3oeducbhjmbqmgw2i3jtz4fekkrinwj REASON=NOT_FOUND";
4045        let event = HsDescEvent::parse(content).unwrap();
4046        assert_eq!(event.action, HsDescAction::Failed);
4047        assert_eq!(event.address, "ajhb7kljbiru65qo");
4048        assert_eq!(event.authentication, Some(HsAuth::NoAuth));
4049        assert_eq!(
4050            event.directory,
4051            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4052        );
4053        assert_eq!(
4054            event.directory_fingerprint,
4055            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4056        );
4057        assert_eq!(event.directory_nickname, None);
4058        assert_eq!(
4059            event.descriptor_id,
4060            Some("b3oeducbhjmbqmgw2i3jtz4fekkrinwj".to_string())
4061        );
4062        assert_eq!(event.reason, Some(HsDescReason::NotFound));
4063    }
4064
4065    #[test]
4066    fn test_parsed_event_dispatch() {
4067        let event = ParsedEvent::parse("BW", "100 200", None).unwrap();
4068        match event {
4069            ParsedEvent::Bandwidth(bw) => {
4070                assert_eq!(bw.read, 100);
4071                assert_eq!(bw.written, 200);
4072            }
4073            _ => panic!("expected bandwidth event"),
4074        }
4075
4076        let event = ParsedEvent::parse("CIRC", "1 BUILT", None).unwrap();
4077        match event {
4078            ParsedEvent::Circuit(circ) => {
4079                assert_eq!(circ.id.0, "1");
4080                assert_eq!(circ.status, CircStatus::Built);
4081            }
4082            _ => panic!("expected circuit event"),
4083        }
4084    }
4085
4086    #[test]
4087    fn test_parsed_event_log_events() {
4088        let event = ParsedEvent::parse("DEBUG", "test debug message", None).unwrap();
4089        match event {
4090            ParsedEvent::Log(log) => {
4091                assert_eq!(log.runlevel, Runlevel::Debug);
4092                assert_eq!(log.message, "test debug message");
4093            }
4094            _ => panic!("expected log event"),
4095        }
4096
4097        let event = ParsedEvent::parse("INFO", "test info message", None).unwrap();
4098        match event {
4099            ParsedEvent::Log(log) => {
4100                assert_eq!(log.runlevel, Runlevel::Info);
4101            }
4102            _ => panic!("expected log event"),
4103        }
4104
4105        let event = ParsedEvent::parse("NOTICE", "test notice message", None).unwrap();
4106        match event {
4107            ParsedEvent::Log(log) => {
4108                assert_eq!(log.runlevel, Runlevel::Notice);
4109            }
4110            _ => panic!("expected log event"),
4111        }
4112
4113        let event = ParsedEvent::parse("WARN", "test warn message", None).unwrap();
4114        match event {
4115            ParsedEvent::Log(log) => {
4116                assert_eq!(log.runlevel, Runlevel::Warn);
4117            }
4118            _ => panic!("expected log event"),
4119        }
4120
4121        let event = ParsedEvent::parse("ERR", "test error message", None).unwrap();
4122        match event {
4123            ParsedEvent::Log(log) => {
4124                assert_eq!(log.runlevel, Runlevel::Err);
4125            }
4126            _ => panic!("expected log event"),
4127        }
4128    }
4129
4130    #[test]
4131    fn test_parsed_event_status_events() {
4132        let event = ParsedEvent::parse("STATUS_GENERAL", "NOTICE CONSENSUS_ARRIVED", None).unwrap();
4133        match event {
4134            ParsedEvent::Status(status) => {
4135                assert_eq!(status.status_type, StatusType::General);
4136                assert_eq!(status.action, "CONSENSUS_ARRIVED");
4137            }
4138            _ => panic!("expected status event"),
4139        }
4140
4141        let event = ParsedEvent::parse("STATUS_CLIENT", "NOTICE ENOUGH_DIR_INFO", None).unwrap();
4142        match event {
4143            ParsedEvent::Status(status) => {
4144                assert_eq!(status.status_type, StatusType::Client);
4145            }
4146            _ => panic!("expected status event"),
4147        }
4148
4149        let event = ParsedEvent::parse(
4150            "STATUS_SERVER",
4151            "NOTICE CHECKING_REACHABILITY ORADDRESS=127.0.0.1:9050",
4152            None,
4153        )
4154        .unwrap();
4155        match event {
4156            ParsedEvent::Status(status) => {
4157                assert_eq!(status.status_type, StatusType::Server);
4158            }
4159            _ => panic!("expected status event"),
4160        }
4161    }
4162
4163    #[test]
4164    fn test_parsed_event_unknown() {
4165        let event = ParsedEvent::parse("UNKNOWN_EVENT", "some content", None).unwrap();
4166        match event {
4167            ParsedEvent::Unknown {
4168                event_type,
4169                content,
4170            } => {
4171                assert_eq!(event_type, "UNKNOWN_EVENT");
4172                assert_eq!(content, "some content");
4173            }
4174            _ => panic!("expected unknown event"),
4175        }
4176    }
4177
4178    #[test]
4179    fn test_parse_circuit_path() {
4180        let path = parse_circuit_path("$999A226EBED397F331B612FE1E4CFAE5C1F201BA=piyaz");
4181        assert_eq!(path.len(), 1);
4182        assert_eq!(path[0].0, "999A226EBED397F331B612FE1E4CFAE5C1F201BA");
4183        assert_eq!(path[0].1, Some("piyaz".to_string()));
4184
4185        let path = parse_circuit_path(
4186            "$E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone,PrivacyRepublic14",
4187        );
4188        assert_eq!(path.len(), 3);
4189    }
4190
4191    #[test]
4192    fn test_parse_relay_endpoint() {
4193        let (fp, nick) = parse_relay_endpoint("$36B5DBA788246E8369DBAF58577C6BC044A9A374");
4194        assert_eq!(fp, "36B5DBA788246E8369DBAF58577C6BC044A9A374");
4195        assert_eq!(nick, None);
4196
4197        let (fp, nick) = parse_relay_endpoint("$5D0034A368E0ABAF663D21847E1C9B6CFA09752A=caerSidi");
4198        assert_eq!(fp, "5D0034A368E0ABAF663D21847E1C9B6CFA09752A");
4199        assert_eq!(nick, Some("caerSidi".to_string()));
4200
4201        let (fp, nick) = parse_relay_endpoint("$B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF~Unnamed");
4202        assert_eq!(fp, "B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF");
4203        assert_eq!(nick, Some("Unnamed".to_string()));
4204    }
4205
4206    #[test]
4207    fn test_parse_target() {
4208        let (host, port) = parse_target("encrypted.google.com:443").unwrap();
4209        assert_eq!(host, "encrypted.google.com");
4210        assert_eq!(port, 443);
4211
4212        let (host, port) = parse_target("74.125.227.129:443").unwrap();
4213        assert_eq!(host, "74.125.227.129");
4214        assert_eq!(port, 443);
4215
4216        let (host, port) = parse_target("www.google.com:0").unwrap();
4217        assert_eq!(host, "www.google.com");
4218        assert_eq!(port, 0);
4219    }
4220
4221    #[test]
4222    fn test_parse_iso_timestamp() {
4223        let dt = parse_iso_timestamp("2012-11-08T16:48:38.417238").unwrap();
4224        assert_eq!(dt.year(), 2012);
4225        assert_eq!(dt.month(), 11);
4226        assert_eq!(dt.day(), 8);
4227        assert_eq!(dt.hour(), 16);
4228        assert_eq!(dt.minute(), 48);
4229        assert_eq!(dt.second(), 38);
4230
4231        let dt = parse_iso_timestamp("2012-12-06T13:51:11.433755").unwrap();
4232        assert_eq!(dt.year(), 2012);
4233        assert_eq!(dt.month(), 12);
4234        assert_eq!(dt.day(), 6);
4235    }
4236
4237    #[test]
4238    fn test_parse_build_flags() {
4239        let flags = parse_build_flags("NEED_CAPACITY");
4240        assert_eq!(flags, vec![CircBuildFlag::NeedCapacity]);
4241
4242        let flags = parse_build_flags("IS_INTERNAL,NEED_CAPACITY");
4243        assert_eq!(
4244            flags,
4245            vec![CircBuildFlag::IsInternal, CircBuildFlag::NeedCapacity]
4246        );
4247
4248        let flags = parse_build_flags("ONEHOP_TUNNEL,IS_INTERNAL,NEED_CAPACITY,NEED_UPTIME");
4249        assert_eq!(
4250            flags,
4251            vec![
4252                CircBuildFlag::OneHopTunnel,
4253                CircBuildFlag::IsInternal,
4254                CircBuildFlag::NeedCapacity,
4255                CircBuildFlag::NeedUptime
4256            ]
4257        );
4258    }
4259}