stem_rs/
events.rs

1//! Event types and handling for Tor control protocol async notifications.
2//!
3//! This module provides comprehensive event types for all Tor control protocol
4//! asynchronous events, as described in section 4.1 of the
5//! [control-spec](https://spec.torproject.org/control-spec/replies.html#asynchronous-events).
6//!
7//! # Overview
8//!
9//! Tor emits asynchronous events to notify controllers about state changes,
10//! bandwidth usage, circuit activity, and other important occurrences. Events
11//! are received after subscribing via the `SETEVENTS` command through the
12//! [`Controller`](crate::Controller).
13//!
14//! # Event Categories
15//!
16//! Events are organized into several categories:
17//!
18//! - **Bandwidth Events**: [`BandwidthEvent`], [`CircuitBandwidthEvent`],
19//!   [`ConnectionBandwidthEvent`] - Track data transfer rates
20//! - **Circuit Events**: [`CircuitEvent`] - Monitor circuit lifecycle
21//! - **Stream Events**: [`StreamEvent`] - Track stream connections
22//! - **Connection Events**: [`OrConnEvent`] - Monitor OR connections
23//! - **Log Events**: [`LogEvent`] - Receive Tor log messages
24//! - **Status Events**: [`StatusEvent`] - Bootstrap progress and status changes
25//! - **Guard Events**: [`GuardEvent`] - Guard relay changes
26//! - **Hidden Service Events**: [`HsDescEvent`] - Hidden service descriptor activity
27//! - **Configuration Events**: [`ConfChangedEvent`] - Configuration changes
28//! - **Network Events**: [`NetworkLivenessEvent`] - Network connectivity status
29//!
30//! # Event Subscription
31//!
32//! To receive events, subscribe using the controller's `set_events` method:
33//!
34//! ```rust,no_run
35//! use stem_rs::{controller::Controller, EventType};
36//!
37//! # async fn example() -> Result<(), stem_rs::Error> {
38//! let mut controller = Controller::from_port("127.0.0.1:9051".parse()?).await?;
39//! controller.authenticate(None).await?;
40//!
41//! // Subscribe to bandwidth and circuit events
42//! controller.set_events(&[EventType::Bw, EventType::Circ]).await?;
43//!
44//! // Events will now be delivered asynchronously
45//! # Ok(())
46//! # }
47//! ```
48//!
49//! # Event Parsing
50//!
51//! Raw event data from Tor is parsed into strongly-typed event structs using
52//! [`ParsedEvent::parse`]. Each event type provides access to its specific
53//! fields while also preserving the raw content for debugging.
54//!
55//! # Thread Safety
56//!
57//! All event types implement [`Send`] and [`Sync`], allowing them to be safely
58//! shared across threads. The [`Event`] trait requires these bounds.
59//!
60//! # See Also
61//!
62//! - [`crate::controller`] - High-level controller API for event subscription
63//! - [`crate::protocol`] - Low-level protocol message handling
64
65use std::collections::HashMap;
66use std::time::Instant;
67
68use chrono::{DateTime, Local, Utc};
69
70use crate::controller::{CircuitId, StreamId};
71use crate::protocol::ControlLine;
72use crate::{
73    CircBuildFlag, CircClosureReason, CircPurpose, CircStatus, ConnectionType, Error, EventType,
74    GuardStatus, GuardType, HiddenServiceState, HsAuth, HsDescAction, HsDescReason,
75    OrClosureReason, OrStatus, Runlevel, Signal, StatusType, StreamClosureReason, StreamPurpose,
76    StreamSource, StreamStatus, TimeoutSetType,
77};
78
79/// Trait implemented by all Tor control protocol events.
80///
81/// This trait provides a common interface for accessing event metadata
82/// regardless of the specific event type. All event types must be thread-safe
83/// (`Send + Sync`) to support concurrent event handling.
84///
85/// # Implementors
86///
87/// All event structs in this module implement this trait:
88/// - [`BandwidthEvent`], [`LogEvent`], [`CircuitEvent`], [`StreamEvent`]
89/// - [`OrConnEvent`], [`AddrMapEvent`], [`BuildTimeoutSetEvent`]
90/// - [`GuardEvent`], [`NewDescEvent`], [`SignalEvent`], [`StatusEvent`]
91/// - [`ConfChangedEvent`], [`NetworkLivenessEvent`], [`CircuitBandwidthEvent`]
92/// - [`ConnectionBandwidthEvent`], [`HsDescEvent`]
93///
94/// # Example
95///
96/// ```rust,ignore
97/// fn handle_event(event: &dyn Event) {
98///     println!("Received {:?} event at {:?}", event.event_type(), event.arrived_at());
99///     println!("Raw content: {}", event.raw_content());
100/// }
101/// ```
102pub trait Event: Send + Sync {
103    /// Returns the type of this event.
104    ///
105    /// This corresponds to the event keyword used in `SETEVENTS` commands.
106    fn event_type(&self) -> EventType;
107
108    /// Returns the raw, unparsed content of the event.
109    ///
110    /// Useful for debugging or when additional parsing is needed beyond
111    /// what the typed event provides.
112    fn raw_content(&self) -> &str;
113
114    /// Returns the instant when this event was received.
115    ///
116    /// This is the local time when the event was parsed, not when Tor
117    /// generated it. Useful for measuring event latency or ordering events.
118    fn arrived_at(&self) -> Instant;
119}
120
121/// Event emitted every second with the bytes sent and received by Tor.
122///
123/// The BW event is one of the most commonly used events for monitoring
124/// Tor's bandwidth usage. It provides a snapshot of data transfer rates
125/// over the last second.
126///
127/// # Event Format
128///
129/// The raw event format is: `BW <bytes_read> <bytes_written>`
130///
131/// # Use Cases
132///
133/// - Monitoring bandwidth consumption
134/// - Building bandwidth graphs
135/// - Detecting network activity
136/// - Rate limiting applications
137///
138/// # Example
139///
140/// ```rust,ignore
141/// use stem_rs::events::BandwidthEvent;
142///
143/// fn handle_bandwidth(event: &BandwidthEvent) {
144///     let read_kbps = event.read as f64 / 1024.0;
145///     let written_kbps = event.written as f64 / 1024.0;
146///     println!("Bandwidth: {:.2} KB/s read, {:.2} KB/s written", read_kbps, written_kbps);
147/// }
148/// ```
149///
150/// # See Also
151///
152/// - [`CircuitBandwidthEvent`] - Per-circuit bandwidth tracking
153/// - [`ConnectionBandwidthEvent`] - Per-connection bandwidth tracking
154#[derive(Debug, Clone)]
155pub struct BandwidthEvent {
156    /// Bytes received by Tor in the last second.
157    pub read: u64,
158    /// Bytes sent by Tor in the last second.
159    pub written: u64,
160    raw_content: String,
161    arrived_at: Instant,
162}
163
164impl Event for BandwidthEvent {
165    fn event_type(&self) -> EventType {
166        EventType::Bw
167    }
168    fn raw_content(&self) -> &str {
169        &self.raw_content
170    }
171    fn arrived_at(&self) -> Instant {
172        self.arrived_at
173    }
174}
175
176impl BandwidthEvent {
177    /// Parses a bandwidth event from raw control protocol content.
178    ///
179    /// # Arguments
180    ///
181    /// * `content` - The event content after the event type, e.g., "15 25"
182    ///
183    /// # Errors
184    ///
185    /// Returns [`Error::Protocol`] if:
186    /// - The content is missing required values
187    /// - The read or written values are not valid integers
188    ///
189    /// # Example
190    ///
191    /// ```rust,ignore
192    /// let event = BandwidthEvent::parse("1024 2048")?;
193    /// assert_eq!(event.read, 1024);
194    /// assert_eq!(event.written, 2048);
195    /// ```
196    pub fn parse(content: &str) -> Result<Self, Error> {
197        let mut line = ControlLine::new(content);
198        let read_str = line.pop(false, false)?;
199        let written_str = line.pop(false, false)?;
200
201        let read: u64 = read_str.parse().map_err(|_| {
202            Error::Protocol(format!("invalid read value in BW event: {}", read_str))
203        })?;
204        let written: u64 = written_str.parse().map_err(|_| {
205            Error::Protocol(format!(
206                "invalid written value in BW event: {}",
207                written_str
208            ))
209        })?;
210
211        Ok(Self {
212            read,
213            written,
214            raw_content: content.to_string(),
215            arrived_at: Instant::now(),
216        })
217    }
218}
219
220/// Tor logging event for receiving log messages from the Tor process.
221///
222/// These are the most visible kind of event since, by default, Tor logs
223/// at the NOTICE [`Runlevel`] to stdout. Log events allow controllers to
224/// receive and process Tor's log output programmatically.
225///
226/// # Runlevels
227///
228/// Log events are categorized by severity:
229/// - [`Runlevel::Debug`] - Verbose debugging information
230/// - [`Runlevel::Info`] - Informational messages
231/// - [`Runlevel::Notice`] - Normal operational messages (default)
232/// - [`Runlevel::Warn`] - Warning conditions
233/// - [`Runlevel::Err`] - Error conditions
234///
235/// # Event Types
236///
237/// Each runlevel corresponds to a separate event type:
238/// - `DEBUG`, `INFO`, `NOTICE`, `WARN`, `ERR`
239///
240/// # Example
241///
242/// ```rust,ignore
243/// use stem_rs::{EventType, Runlevel};
244/// use stem_rs::events::LogEvent;
245///
246/// fn handle_log(event: &LogEvent) {
247///     match event.runlevel {
248///         Runlevel::Err | Runlevel::Warn => {
249///             eprintln!("[{}] {}", event.runlevel, event.message);
250///         }
251///         _ => {
252///             println!("[{}] {}", event.runlevel, event.message);
253///         }
254///     }
255/// }
256/// ```
257///
258/// # See Also
259///
260/// - [`Runlevel`](crate::Runlevel) - Log severity levels
261/// - [`StatusEvent`] - Structured status messages
262#[derive(Debug, Clone)]
263pub struct LogEvent {
264    /// Severity level of the log message.
265    pub runlevel: Runlevel,
266    /// The log message content.
267    pub message: String,
268    raw_content: String,
269    arrived_at: Instant,
270}
271
272impl Event for LogEvent {
273    fn event_type(&self) -> EventType {
274        match self.runlevel {
275            Runlevel::Debug => EventType::Debug,
276            Runlevel::Info => EventType::Info,
277            Runlevel::Notice => EventType::Notice,
278            Runlevel::Warn => EventType::Warn,
279            Runlevel::Err => EventType::Err,
280        }
281    }
282    fn raw_content(&self) -> &str {
283        &self.raw_content
284    }
285    fn arrived_at(&self) -> Instant {
286        self.arrived_at
287    }
288}
289
290impl LogEvent {
291    /// Parses a log event from raw control protocol content.
292    ///
293    /// # Arguments
294    ///
295    /// * `runlevel` - The severity level of the log message
296    /// * `message` - The log message content
297    ///
298    /// # Errors
299    ///
300    /// This method currently does not return errors but returns `Result`
301    /// for API consistency with other event parsers.
302    pub fn parse(runlevel: Runlevel, message: &str) -> Result<Self, Error> {
303        Ok(Self {
304            runlevel,
305            message: message.to_string(),
306            raw_content: message.to_string(),
307            arrived_at: Instant::now(),
308        })
309    }
310}
311
312/// Event indicating that a circuit's status has changed.
313///
314/// Circuit events are fundamental to understanding Tor's operation. They
315/// track the lifecycle of circuits from creation through closure, including
316/// the relays involved and the purpose of each circuit.
317///
318/// # Circuit Lifecycle
319///
320/// Circuits progress through these states:
321/// 1. [`CircStatus::Launched`] - Circuit creation initiated
322/// 2. [`CircStatus::Extended`] - Circuit extended to additional hops
323/// 3. [`CircStatus::Built`] - Circuit fully constructed and ready
324/// 4. [`CircStatus::Failed`] or [`CircStatus::Closed`] - Circuit terminated
325///
326/// # Path Information
327///
328/// The `path` field contains the relays in the circuit as `(fingerprint, nickname)`
329/// tuples. The fingerprint is always present; the nickname may be `None` if
330/// the `VERBOSE_NAMES` feature isn't enabled (on by default since Tor 0.2.2.1).
331///
332/// # Hidden Service Circuits
333///
334/// For hidden service circuits, additional fields provide context:
335/// - `hs_state` - Current state in the hidden service protocol
336/// - `rend_query` - The rendezvous point address
337/// - `purpose` - Indicates the circuit's role (intro, rend, etc.)
338///
339/// # Example
340///
341/// ```rust,ignore
342/// use stem_rs::events::CircuitEvent;
343/// use stem_rs::CircStatus;
344///
345/// fn handle_circuit(event: &CircuitEvent) {
346///     match event.status {
347///         CircStatus::Built => {
348///             println!("Circuit {} built with {} hops", event.id, event.path.len());
349///             for (fingerprint, nickname) in &event.path {
350///                 println!("  - {} ({:?})", fingerprint, nickname);
351///             }
352///         }
353///         CircStatus::Failed => {
354///             println!("Circuit {} failed: {:?}", event.id, event.reason);
355///         }
356///         _ => {}
357///     }
358/// }
359/// ```
360///
361/// # See Also
362///
363/// - [`CircStatus`](crate::CircStatus) - Circuit status values
364/// - [`CircPurpose`](crate::CircPurpose) - Circuit purpose types
365/// - [`CircClosureReason`](crate::CircClosureReason) - Closure reasons
366#[derive(Debug, Clone)]
367pub struct CircuitEvent {
368    /// Unique identifier for this circuit.
369    pub id: CircuitId,
370    /// Current status of the circuit.
371    pub status: CircStatus,
372    /// Relays in the circuit path as `(fingerprint, nickname)` tuples.
373    pub path: Vec<(String, Option<String>)>,
374    /// Flags governing how the circuit was built.
375    pub build_flags: Option<Vec<CircBuildFlag>>,
376    /// Purpose that the circuit is intended for.
377    pub purpose: Option<CircPurpose>,
378    /// Hidden service state if this is an HS circuit.
379    pub hs_state: Option<HiddenServiceState>,
380    /// Rendezvous query if this is a hidden service circuit.
381    pub rend_query: Option<String>,
382    /// Time when the circuit was created or cannibalized.
383    pub created: Option<DateTime<Utc>>,
384    /// Reason for circuit closure (local).
385    pub reason: Option<CircClosureReason>,
386    /// Reason for circuit closure (from remote side).
387    pub remote_reason: Option<CircClosureReason>,
388    /// SOCKS username for stream isolation.
389    pub socks_username: Option<String>,
390    /// SOCKS password for stream isolation.
391    pub socks_password: Option<String>,
392    raw_content: String,
393    arrived_at: Instant,
394}
395
396impl Event for CircuitEvent {
397    fn event_type(&self) -> EventType {
398        EventType::Circ
399    }
400    fn raw_content(&self) -> &str {
401        &self.raw_content
402    }
403    fn arrived_at(&self) -> Instant {
404        self.arrived_at
405    }
406}
407
408impl CircuitEvent {
409    /// Parses a circuit event from raw control protocol content.
410    ///
411    /// # Arguments
412    ///
413    /// * `content` - The event content after the event type
414    ///
415    /// # Event Format
416    ///
417    /// ```text
418    /// CircuitID CircStatus [Path] [BUILD_FLAGS=...] [PURPOSE=...] [HS_STATE=...]
419    /// [REND_QUERY=...] [TIME_CREATED=...] [REASON=...] [REMOTE_REASON=...]
420    /// [SOCKS_USERNAME="..."] [SOCKS_PASSWORD="..."]
421    /// ```
422    ///
423    /// # Errors
424    ///
425    /// Returns [`Error::Protocol`] if:
426    /// - The circuit ID or status is missing
427    /// - The status is not a recognized value
428    pub fn parse(content: &str) -> Result<Self, Error> {
429        let mut line = ControlLine::new(content);
430        let id_str = line.pop(false, false)?;
431        let status_str = line.pop(false, false)?;
432        let status = parse_circ_status(&status_str)?;
433
434        let mut path = Vec::new();
435        let mut build_flags = None;
436        let mut purpose = None;
437        let mut hs_state = None;
438        let mut rend_query = None;
439        let mut created = None;
440        let mut reason = None;
441        let mut remote_reason = None;
442        let mut socks_username = None;
443        let mut socks_password = None;
444
445        while !line.is_empty() {
446            if line.is_next_mapping(Some("BUILD_FLAGS"), false) {
447                let (_, flags_str) = line.pop_mapping(false, false)?;
448                build_flags = Some(parse_build_flags(&flags_str));
449            } else if line.is_next_mapping(Some("PURPOSE"), false) {
450                let (_, p) = line.pop_mapping(false, false)?;
451                purpose = parse_circ_purpose(&p).ok();
452            } else if line.is_next_mapping(Some("HS_STATE"), false) {
453                let (_, s) = line.pop_mapping(false, false)?;
454                hs_state = parse_hs_state(&s).ok();
455            } else if line.is_next_mapping(Some("REND_QUERY"), false) {
456                let (_, q) = line.pop_mapping(false, false)?;
457                rend_query = Some(q);
458            } else if line.is_next_mapping(Some("TIME_CREATED"), false) {
459                let (_, t) = line.pop_mapping(false, false)?;
460                created = parse_iso_timestamp(&t).ok();
461            } else if line.is_next_mapping(Some("REASON"), false) {
462                let (_, r) = line.pop_mapping(false, false)?;
463                reason = parse_circ_closure_reason(&r).ok();
464            } else if line.is_next_mapping(Some("REMOTE_REASON"), false) {
465                let (_, r) = line.pop_mapping(false, false)?;
466                remote_reason = parse_circ_closure_reason(&r).ok();
467            } else if line.is_next_mapping(Some("SOCKS_USERNAME"), true) {
468                let (_, u) = line.pop_mapping(true, true)?;
469                socks_username = Some(u);
470            } else if line.is_next_mapping(Some("SOCKS_PASSWORD"), true) {
471                let (_, p) = line.pop_mapping(true, true)?;
472                socks_password = Some(p);
473            } else {
474                let token = line.pop(false, false)?;
475                if token.starts_with('$') || token.contains('~') || token.contains(',') {
476                    path = parse_circuit_path(&token);
477                }
478            }
479        }
480
481        Ok(Self {
482            id: CircuitId::new(id_str),
483            status,
484            path,
485            build_flags,
486            purpose,
487            hs_state,
488            rend_query,
489            created,
490            reason,
491            remote_reason,
492            socks_username,
493            socks_password,
494            raw_content: content.to_string(),
495            arrived_at: Instant::now(),
496        })
497    }
498}
499
500/// Event indicating that a stream's status has changed.
501///
502/// Stream events track the lifecycle of TCP connections made through Tor.
503/// Each stream is associated with a circuit and connects to a specific
504/// target host and port.
505///
506/// # Stream Lifecycle
507///
508/// Streams progress through these states:
509/// 1. [`StreamStatus::New`] - New stream request received
510/// 2. [`StreamStatus::SentConnect`] - CONNECT sent to exit relay
511/// 3. [`StreamStatus::Remap`] - Address remapped (e.g., DNS resolution)
512/// 4. [`StreamStatus::Succeeded`] - Connection established
513/// 5. [`StreamStatus::Closed`] or [`StreamStatus::Failed`] - Stream terminated
514///
515/// # Circuit Association
516///
517/// The `circuit_id` field indicates which circuit carries this stream.
518/// A value of `None` (circuit ID "0") means the stream is not yet
519/// attached to a circuit.
520///
521/// # Example
522///
523/// ```rust,ignore
524/// use stem_rs::events::StreamEvent;
525/// use stem_rs::StreamStatus;
526///
527/// fn handle_stream(event: &StreamEvent) {
528///     match event.status {
529///         StreamStatus::New => {
530///             println!("New stream {} to {}:{}",
531///                 event.id, event.target_host, event.target_port);
532///         }
533///         StreamStatus::Succeeded => {
534///             println!("Stream {} connected via circuit {:?}",
535///                 event.id, event.circuit_id);
536///         }
537///         StreamStatus::Closed | StreamStatus::Failed => {
538///             println!("Stream {} ended: {:?}", event.id, event.reason);
539///         }
540///         _ => {}
541///     }
542/// }
543/// ```
544///
545/// # See Also
546///
547/// - [`StreamStatus`](crate::StreamStatus) - Stream status values
548/// - [`StreamPurpose`](crate::StreamPurpose) - Stream purpose types
549/// - [`StreamClosureReason`](crate::StreamClosureReason) - Closure reasons
550#[derive(Debug, Clone)]
551pub struct StreamEvent {
552    /// Unique identifier for this stream.
553    pub id: StreamId,
554    /// Current status of the stream.
555    pub status: StreamStatus,
556    /// Circuit carrying this stream, or `None` if unattached.
557    pub circuit_id: Option<CircuitId>,
558    /// Target hostname or IP address.
559    pub target_host: String,
560    /// Target port number.
561    pub target_port: u16,
562    /// Reason for stream closure (local).
563    pub reason: Option<StreamClosureReason>,
564    /// Reason for stream closure (from remote side).
565    pub remote_reason: Option<StreamClosureReason>,
566    /// Source of address resolution (cache or exit).
567    pub source: Option<StreamSource>,
568    /// Source address of the client connection.
569    pub source_addr: Option<String>,
570    /// Purpose of this stream.
571    pub purpose: Option<StreamPurpose>,
572    raw_content: String,
573    arrived_at: Instant,
574}
575
576impl Event for StreamEvent {
577    fn event_type(&self) -> EventType {
578        EventType::Stream
579    }
580    fn raw_content(&self) -> &str {
581        &self.raw_content
582    }
583    fn arrived_at(&self) -> Instant {
584        self.arrived_at
585    }
586}
587
588impl StreamEvent {
589    /// Parses a stream event from raw control protocol content.
590    ///
591    /// # Arguments
592    ///
593    /// * `content` - The event content after the event type
594    ///
595    /// # Event Format
596    ///
597    /// ```text
598    /// StreamID StreamStatus CircuitID Target [REASON=...] [REMOTE_REASON=...]
599    /// [SOURCE=...] [SOURCE_ADDR=...] [PURPOSE=...]
600    /// ```
601    ///
602    /// # Errors
603    ///
604    /// Returns [`Error::Protocol`] if:
605    /// - Required fields are missing
606    /// - The status is not a recognized value
607    /// - The target format is invalid
608    pub fn parse(content: &str) -> Result<Self, Error> {
609        let mut line = ControlLine::new(content);
610        let id_str = line.pop(false, false)?;
611        let status_str = line.pop(false, false)?;
612        let circuit_id_str = line.pop(false, false)?;
613        let target = line.pop(false, false)?;
614
615        let status = parse_stream_status(&status_str)?;
616        let circuit_id = if circuit_id_str == "0" {
617            None
618        } else {
619            Some(CircuitId::new(circuit_id_str))
620        };
621        let (target_host, target_port) = parse_target(&target)?;
622
623        let mut reason = None;
624        let mut remote_reason = None;
625        let mut source = None;
626        let mut source_addr = None;
627        let mut purpose = None;
628
629        while !line.is_empty() {
630            if line.is_next_mapping(Some("REASON"), false) {
631                let (_, r) = line.pop_mapping(false, false)?;
632                reason = parse_stream_closure_reason(&r).ok();
633            } else if line.is_next_mapping(Some("REMOTE_REASON"), false) {
634                let (_, r) = line.pop_mapping(false, false)?;
635                remote_reason = parse_stream_closure_reason(&r).ok();
636            } else if line.is_next_mapping(Some("SOURCE"), false) {
637                let (_, s) = line.pop_mapping(false, false)?;
638                source = parse_stream_source(&s).ok();
639            } else if line.is_next_mapping(Some("SOURCE_ADDR"), false) {
640                let (_, a) = line.pop_mapping(false, false)?;
641                source_addr = Some(a);
642            } else if line.is_next_mapping(Some("PURPOSE"), false) {
643                let (_, p) = line.pop_mapping(false, false)?;
644                purpose = parse_stream_purpose(&p).ok();
645            } else {
646                let _ = line.pop(false, false)?;
647            }
648        }
649
650        Ok(Self {
651            id: StreamId::new(id_str),
652            status,
653            circuit_id,
654            target_host,
655            target_port,
656            reason,
657            remote_reason,
658            source,
659            source_addr,
660            purpose,
661            raw_content: content.to_string(),
662            arrived_at: Instant::now(),
663        })
664    }
665}
666
667/// Event indicating that an OR (Onion Router) connection status has changed.
668///
669/// OR connection events track the status of connections between Tor relays.
670/// These are the TLS connections that carry circuit traffic between nodes
671/// in the Tor network.
672///
673/// # Connection Lifecycle
674///
675/// OR connections progress through these states:
676/// 1. [`OrStatus::New`] - Connection initiated
677/// 2. [`OrStatus::Launched`] - Connection attempt in progress
678/// 3. [`OrStatus::Connected`] - TLS handshake completed
679/// 4. [`OrStatus::Failed`] or [`OrStatus::Closed`] - Connection terminated
680///
681/// # Example
682///
683/// ```rust,ignore
684/// use stem_rs::events::OrConnEvent;
685/// use stem_rs::OrStatus;
686///
687/// fn handle_orconn(event: &OrConnEvent) {
688///     match event.status {
689///         OrStatus::Connected => {
690///             println!("Connected to relay: {}", event.target);
691///         }
692///         OrStatus::Failed | OrStatus::Closed => {
693///             println!("Connection to {} ended: {:?}", event.target, event.reason);
694///         }
695///         _ => {}
696///     }
697/// }
698/// ```
699///
700/// # See Also
701///
702/// - [`OrStatus`](crate::OrStatus) - OR connection status values
703/// - [`OrClosureReason`](crate::OrClosureReason) - Closure reasons
704#[derive(Debug, Clone)]
705pub struct OrConnEvent {
706    /// Connection identifier (may be `None` for older Tor versions).
707    pub id: Option<String>,
708    /// Current status of the OR connection.
709    pub status: OrStatus,
710    /// Target relay address (IP:port or fingerprint).
711    pub target: String,
712    /// Reason for connection closure.
713    pub reason: Option<OrClosureReason>,
714    /// Number of circuits using this connection.
715    pub num_circuits: Option<u32>,
716    raw_content: String,
717    arrived_at: Instant,
718}
719
720impl Event for OrConnEvent {
721    fn event_type(&self) -> EventType {
722        EventType::OrConn
723    }
724    fn raw_content(&self) -> &str {
725        &self.raw_content
726    }
727    fn arrived_at(&self) -> Instant {
728        self.arrived_at
729    }
730}
731
732impl OrConnEvent {
733    /// Parses an OR connection event from raw control protocol content.
734    ///
735    /// # Arguments
736    ///
737    /// * `content` - The event content after the event type
738    ///
739    /// # Event Format
740    ///
741    /// ```text
742    /// Target Status [REASON=...] [NCIRCS=...] [ID=...]
743    /// ```
744    ///
745    /// # Errors
746    ///
747    /// Returns [`Error::Protocol`] if:
748    /// - Required fields are missing
749    /// - The status is not a recognized value
750    pub fn parse(content: &str) -> Result<Self, Error> {
751        let mut line = ControlLine::new(content);
752        let target = line.pop(false, false)?;
753        let status_str = line.pop(false, false)?;
754        let status = parse_or_status(&status_str)?;
755
756        let mut id = None;
757        let mut reason = None;
758        let mut num_circuits = None;
759
760        while !line.is_empty() {
761            if line.is_next_mapping(Some("REASON"), false) {
762                let (_, r) = line.pop_mapping(false, false)?;
763                reason = parse_or_closure_reason(&r).ok();
764            } else if line.is_next_mapping(Some("NCIRCS"), false) {
765                let (_, n) = line.pop_mapping(false, false)?;
766                num_circuits = n.parse().ok();
767            } else if line.is_next_mapping(Some("ID"), false) {
768                let (_, i) = line.pop_mapping(false, false)?;
769                id = Some(i);
770            } else {
771                let _ = line.pop(false, false)?;
772            }
773        }
774
775        Ok(Self {
776            id,
777            status,
778            target,
779            reason,
780            num_circuits,
781            raw_content: content.to_string(),
782            arrived_at: Instant::now(),
783        })
784    }
785}
786
787/// Event indicating a new address mapping has been created.
788///
789/// Address map events are emitted when Tor creates a mapping between
790/// a hostname and its resolved address. This can occur due to DNS
791/// resolution, `MAPADDRESS` commands, or `TrackHostExits` configuration.
792///
793/// # Expiration
794///
795/// Address mappings have an expiration time after which they are no longer
796/// valid. The `expiry` field contains the local time, while `utc_expiry`
797/// contains the UTC time (if available).
798///
799/// # Caching
800///
801/// The `cached` field indicates whether the mapping will be kept until
802/// expiration (`true`) or may be evicted earlier (`false`).
803///
804/// # Error Mappings
805///
806/// When DNS resolution fails, `destination` will be `None` and the `error`
807/// field will contain the error code.
808///
809/// # Example
810///
811/// ```rust,ignore
812/// use stem_rs::events::AddrMapEvent;
813///
814/// fn handle_addrmap(event: &AddrMapEvent) {
815///     match &event.destination {
816///         Some(dest) => {
817///             println!("{} -> {} (expires: {:?})",
818///                 event.hostname, dest, event.expiry);
819///         }
820///         None => {
821///             println!("Resolution failed for {}: {:?}",
822///                 event.hostname, event.error);
823///         }
824///     }
825/// }
826/// ```
827#[derive(Debug, Clone)]
828pub struct AddrMapEvent {
829    /// The hostname being resolved.
830    pub hostname: String,
831    /// The resolved address, or `None` if resolution failed.
832    pub destination: Option<String>,
833    /// Expiration time in local time.
834    pub expiry: Option<DateTime<Local>>,
835    /// Error code if resolution failed.
836    pub error: Option<String>,
837    /// Expiration time in UTC.
838    pub utc_expiry: Option<DateTime<Utc>>,
839    /// Whether the mapping is cached until expiration.
840    pub cached: Option<bool>,
841    raw_content: String,
842    arrived_at: Instant,
843}
844
845impl Event for AddrMapEvent {
846    fn event_type(&self) -> EventType {
847        EventType::AddrMap
848    }
849    fn raw_content(&self) -> &str {
850        &self.raw_content
851    }
852    fn arrived_at(&self) -> Instant {
853        self.arrived_at
854    }
855}
856
857impl AddrMapEvent {
858    /// Parses an address map event from raw control protocol content.
859    ///
860    /// # Arguments
861    ///
862    /// * `content` - The event content after the event type
863    ///
864    /// # Event Format
865    ///
866    /// ```text
867    /// Hostname Destination Expiry [error=...] [EXPIRES="..."] [CACHED=YES|NO]
868    /// ```
869    ///
870    /// # Errors
871    ///
872    /// Returns [`Error::Protocol`] if required fields are missing.
873    pub fn parse(content: &str) -> Result<Self, Error> {
874        let mut line = ControlLine::new(content);
875        let hostname = line.pop(false, false)?;
876        let dest_str = line.pop(false, false)?;
877        let destination = if dest_str == "<error>" {
878            None
879        } else {
880            Some(dest_str)
881        };
882
883        let expiry_str = if line.is_next_quoted() {
884            Some(line.pop(true, false)?)
885        } else {
886            let token = line.pop(false, false)?;
887            if token == "NEVER" {
888                None
889            } else {
890                Some(token)
891            }
892        };
893
894        let expiry = expiry_str.and_then(|s| parse_local_timestamp(&s).ok());
895
896        let mut error = None;
897        let mut utc_expiry = None;
898        let mut cached = None;
899
900        while !line.is_empty() {
901            if line.is_next_mapping(Some("error"), false) {
902                let (_, e) = line.pop_mapping(false, false)?;
903                error = Some(e);
904            } else if line.is_next_mapping(Some("EXPIRES"), true) {
905                let (_, e) = line.pop_mapping(true, false)?;
906                utc_expiry = parse_utc_timestamp(&e).ok();
907            } else if line.is_next_mapping(Some("CACHED"), true) {
908                let (_, c) = line.pop_mapping(true, false)?;
909                cached = match c.as_str() {
910                    "YES" => Some(true),
911                    "NO" => Some(false),
912                    _ => None,
913                };
914            } else {
915                let _ = line.pop(false, false)?;
916            }
917        }
918
919        Ok(Self {
920            hostname,
921            destination,
922            expiry,
923            error,
924            utc_expiry,
925            cached,
926            raw_content: content.to_string(),
927            arrived_at: Instant::now(),
928        })
929    }
930}
931
932/// Event indicating that the circuit build timeout has changed.
933///
934/// Tor dynamically adjusts its circuit build timeout based on observed
935/// circuit construction times. This event is emitted when the timeout
936/// value changes, providing insight into network performance.
937///
938/// # Timeout Calculation
939///
940/// Tor uses a Pareto distribution to model circuit build times:
941/// - `xm` - The Pareto Xm parameter (minimum value)
942/// - `alpha` - The Pareto alpha parameter (shape)
943/// - `quantile` - The CDF cutoff quantile
944///
945/// # Set Types
946///
947/// The `set_type` indicates why the timeout changed:
948/// - [`TimeoutSetType::Computed`] - Calculated from observed times
949/// - [`TimeoutSetType::Reset`] - Reset to default values
950/// - [`TimeoutSetType::Suspended`] - Timeout learning suspended
951/// - [`TimeoutSetType::Discard`] - Discarding learned values
952/// - [`TimeoutSetType::Resume`] - Resuming timeout learning
953///
954/// # Example
955///
956/// ```rust,ignore
957/// use stem_rs::events::BuildTimeoutSetEvent;
958///
959/// fn handle_timeout(event: &BuildTimeoutSetEvent) {
960///     if let Some(timeout) = event.timeout {
961///         println!("Circuit timeout set to {}ms ({:?})", timeout, event.set_type);
962///     }
963///     if let Some(rate) = event.timeout_rate {
964///         println!("Timeout rate: {:.2}%", rate * 100.0);
965///     }
966/// }
967/// ```
968///
969/// # See Also
970///
971/// - [`TimeoutSetType`](crate::TimeoutSetType) - Timeout change reasons
972#[derive(Debug, Clone)]
973pub struct BuildTimeoutSetEvent {
974    /// Type of timeout change.
975    pub set_type: TimeoutSetType,
976    /// Number of circuit build times used to calculate timeout.
977    pub total_times: Option<u32>,
978    /// Circuit build timeout in milliseconds.
979    pub timeout: Option<u32>,
980    /// Pareto Xm parameter in milliseconds.
981    pub xm: Option<u32>,
982    /// Pareto alpha parameter.
983    pub alpha: Option<f64>,
984    /// CDF quantile cutoff point.
985    pub quantile: Option<f64>,
986    /// Ratio of circuits that timed out.
987    pub timeout_rate: Option<f64>,
988    /// Duration to keep measurement circuits in milliseconds.
989    pub close_timeout: Option<u32>,
990    /// Ratio of measurement circuits that were closed.
991    pub close_rate: Option<f64>,
992    raw_content: String,
993    arrived_at: Instant,
994}
995
996impl Event for BuildTimeoutSetEvent {
997    fn event_type(&self) -> EventType {
998        EventType::BuildTimeoutSet
999    }
1000    fn raw_content(&self) -> &str {
1001        &self.raw_content
1002    }
1003    fn arrived_at(&self) -> Instant {
1004        self.arrived_at
1005    }
1006}
1007
1008impl BuildTimeoutSetEvent {
1009    /// Parses a build timeout set event from raw control protocol content.
1010    ///
1011    /// # Arguments
1012    ///
1013    /// * `content` - The event content after the event type
1014    ///
1015    /// # Event Format
1016    ///
1017    /// ```text
1018    /// SetType [TOTAL_TIMES=...] [TIMEOUT_MS=...] [XM=...] [ALPHA=...]
1019    /// [CUTOFF_QUANTILE=...] [TIMEOUT_RATE=...] [CLOSE_MS=...] [CLOSE_RATE=...]
1020    /// ```
1021    ///
1022    /// # Errors
1023    ///
1024    /// Returns [`Error::Protocol`] if:
1025    /// - The set type is missing or unrecognized
1026    /// - Numeric values cannot be parsed
1027    pub fn parse(content: &str) -> Result<Self, Error> {
1028        let mut line = ControlLine::new(content);
1029        let set_type_str = line.pop(false, false)?;
1030        let set_type = parse_timeout_set_type(&set_type_str)?;
1031
1032        let mut total_times = None;
1033        let mut timeout = None;
1034        let mut xm = None;
1035        let mut alpha = None;
1036        let mut quantile = None;
1037        let mut timeout_rate = None;
1038        let mut close_timeout = None;
1039        let mut close_rate = None;
1040
1041        while !line.is_empty() {
1042            if line.is_next_mapping(Some("TOTAL_TIMES"), false) {
1043                let (_, v) = line.pop_mapping(false, false)?;
1044                total_times = Some(
1045                    v.parse()
1046                        .map_err(|_| Error::Protocol(format!("invalid TOTAL_TIMES: {}", v)))?,
1047                );
1048            } else if line.is_next_mapping(Some("TIMEOUT_MS"), false) {
1049                let (_, v) = line.pop_mapping(false, false)?;
1050                timeout = Some(
1051                    v.parse()
1052                        .map_err(|_| Error::Protocol(format!("invalid TIMEOUT_MS: {}", v)))?,
1053                );
1054            } else if line.is_next_mapping(Some("XM"), false) {
1055                let (_, v) = line.pop_mapping(false, false)?;
1056                xm = Some(
1057                    v.parse()
1058                        .map_err(|_| Error::Protocol(format!("invalid XM: {}", v)))?,
1059                );
1060            } else if line.is_next_mapping(Some("ALPHA"), false) {
1061                let (_, v) = line.pop_mapping(false, false)?;
1062                alpha = Some(
1063                    v.parse()
1064                        .map_err(|_| Error::Protocol(format!("invalid ALPHA: {}", v)))?,
1065                );
1066            } else if line.is_next_mapping(Some("CUTOFF_QUANTILE"), false) {
1067                let (_, v) = line.pop_mapping(false, false)?;
1068                quantile = Some(
1069                    v.parse()
1070                        .map_err(|_| Error::Protocol(format!("invalid CUTOFF_QUANTILE: {}", v)))?,
1071                );
1072            } else if line.is_next_mapping(Some("TIMEOUT_RATE"), false) {
1073                let (_, v) = line.pop_mapping(false, false)?;
1074                timeout_rate = Some(
1075                    v.parse()
1076                        .map_err(|_| Error::Protocol(format!("invalid TIMEOUT_RATE: {}", v)))?,
1077                );
1078            } else if line.is_next_mapping(Some("CLOSE_MS"), false) {
1079                let (_, v) = line.pop_mapping(false, false)?;
1080                close_timeout = Some(
1081                    v.parse()
1082                        .map_err(|_| Error::Protocol(format!("invalid CLOSE_MS: {}", v)))?,
1083                );
1084            } else if line.is_next_mapping(Some("CLOSE_RATE"), false) {
1085                let (_, v) = line.pop_mapping(false, false)?;
1086                close_rate = Some(
1087                    v.parse()
1088                        .map_err(|_| Error::Protocol(format!("invalid CLOSE_RATE: {}", v)))?,
1089                );
1090            } else {
1091                let _ = line.pop(false, false)?;
1092            }
1093        }
1094
1095        Ok(Self {
1096            set_type,
1097            total_times,
1098            timeout,
1099            xm,
1100            alpha,
1101            quantile,
1102            timeout_rate,
1103            close_timeout,
1104            close_rate,
1105            raw_content: content.to_string(),
1106            arrived_at: Instant::now(),
1107        })
1108    }
1109}
1110
1111/// Event indicating that guard relay status has changed.
1112///
1113/// Guard events track changes to the entry guards that Tor uses for the
1114/// first hop of circuits. Entry guards are a security feature that limits
1115/// the set of relays that can observe your traffic entering the Tor network.
1116///
1117/// # Guard Types
1118///
1119/// Currently, only [`GuardType::Entry`] is used, representing entry guards.
1120///
1121/// # Guard Status
1122///
1123/// Guards can have these statuses:
1124/// - [`GuardStatus::New`] - Newly selected as a guard
1125/// - [`GuardStatus::Up`] - Guard is reachable
1126/// - [`GuardStatus::Down`] - Guard is unreachable
1127/// - [`GuardStatus::Good`] - Guard confirmed as good
1128/// - [`GuardStatus::Bad`] - Guard marked as bad
1129/// - [`GuardStatus::Dropped`] - Guard removed from list
1130///
1131/// # Example
1132///
1133/// ```rust,ignore
1134/// use stem_rs::events::GuardEvent;
1135/// use stem_rs::GuardStatus;
1136///
1137/// fn handle_guard(event: &GuardEvent) {
1138///     match event.status {
1139///         GuardStatus::New => {
1140///             println!("New guard: {} ({:?})",
1141///                 event.endpoint_fingerprint, event.endpoint_nickname);
1142///         }
1143///         GuardStatus::Down => {
1144///             println!("Guard {} is down", event.endpoint_fingerprint);
1145///         }
1146///         GuardStatus::Dropped => {
1147///             println!("Guard {} dropped", event.endpoint_fingerprint);
1148///         }
1149///         _ => {}
1150///     }
1151/// }
1152/// ```
1153///
1154/// # See Also
1155///
1156/// - [`GuardType`](crate::GuardType) - Guard type values
1157/// - [`GuardStatus`](crate::GuardStatus) - Guard status values
1158#[derive(Debug, Clone)]
1159pub struct GuardEvent {
1160    /// Type of guard (currently only Entry).
1161    pub guard_type: GuardType,
1162    /// Full endpoint string (fingerprint with optional nickname).
1163    pub endpoint: String,
1164    /// Relay fingerprint (40 hex characters).
1165    pub endpoint_fingerprint: String,
1166    /// Relay nickname if available.
1167    pub endpoint_nickname: Option<String>,
1168    /// Current status of the guard.
1169    pub status: GuardStatus,
1170    raw_content: String,
1171    arrived_at: Instant,
1172}
1173
1174impl Event for GuardEvent {
1175    fn event_type(&self) -> EventType {
1176        EventType::Guard
1177    }
1178    fn raw_content(&self) -> &str {
1179        &self.raw_content
1180    }
1181    fn arrived_at(&self) -> Instant {
1182        self.arrived_at
1183    }
1184}
1185
1186impl GuardEvent {
1187    /// Parses a guard event from raw control protocol content.
1188    ///
1189    /// # Arguments
1190    ///
1191    /// * `content` - The event content after the event type
1192    ///
1193    /// # Event Format
1194    ///
1195    /// ```text
1196    /// GuardType Endpoint Status
1197    /// ```
1198    ///
1199    /// Where Endpoint is either a fingerprint or `fingerprint=nickname`.
1200    ///
1201    /// # Errors
1202    ///
1203    /// Returns [`Error::Protocol`] if:
1204    /// - Required fields are missing
1205    /// - The guard type or status is unrecognized
1206    pub fn parse(content: &str) -> Result<Self, Error> {
1207        let mut line = ControlLine::new(content);
1208        let guard_type_str = line.pop(false, false)?;
1209        let endpoint = line.pop(false, false)?;
1210        let status_str = line.pop(false, false)?;
1211
1212        let guard_type = parse_guard_type(&guard_type_str)?;
1213        let status = parse_guard_status(&status_str)?;
1214        let (fingerprint, nickname) = parse_relay_endpoint(&endpoint);
1215
1216        Ok(Self {
1217            guard_type,
1218            endpoint,
1219            endpoint_fingerprint: fingerprint,
1220            endpoint_nickname: nickname,
1221            status,
1222            raw_content: content.to_string(),
1223            arrived_at: Instant::now(),
1224        })
1225    }
1226}
1227
1228/// Event indicating that new relay descriptors are available.
1229///
1230/// This event is emitted when Tor receives new server descriptors for
1231/// relays in the network. It provides a list of relays whose descriptors
1232/// have been updated.
1233///
1234/// # Relay Identification
1235///
1236/// Each relay is identified by its fingerprint and optionally its nickname.
1237/// The `relays` field contains `(fingerprint, nickname)` tuples.
1238///
1239/// # Example
1240///
1241/// ```rust,ignore
1242/// use stem_rs::events::NewDescEvent;
1243///
1244/// fn handle_newdesc(event: &NewDescEvent) {
1245///     println!("Received {} new descriptors:", event.relays.len());
1246///     for (fingerprint, nickname) in &event.relays {
1247///         match nickname {
1248///             Some(nick) => println!("  {} ({})", fingerprint, nick),
1249///             None => println!("  {}", fingerprint),
1250///         }
1251///     }
1252/// }
1253/// ```
1254#[derive(Debug, Clone)]
1255pub struct NewDescEvent {
1256    /// List of relays with new descriptors as `(fingerprint, nickname)` tuples.
1257    pub relays: Vec<(String, Option<String>)>,
1258    raw_content: String,
1259    arrived_at: Instant,
1260}
1261
1262impl Event for NewDescEvent {
1263    fn event_type(&self) -> EventType {
1264        EventType::NewDesc
1265    }
1266    fn raw_content(&self) -> &str {
1267        &self.raw_content
1268    }
1269    fn arrived_at(&self) -> Instant {
1270        self.arrived_at
1271    }
1272}
1273
1274impl NewDescEvent {
1275    /// Parses a new descriptor event from raw control protocol content.
1276    ///
1277    /// # Arguments
1278    ///
1279    /// * `content` - The event content after the event type
1280    ///
1281    /// # Event Format
1282    ///
1283    /// ```text
1284    /// Relay1 [Relay2 ...]
1285    /// ```
1286    ///
1287    /// Where each relay is either a fingerprint or `fingerprint=nickname`.
1288    ///
1289    /// # Errors
1290    ///
1291    /// This method currently does not return errors but returns `Result`
1292    /// for API consistency.
1293    pub fn parse(content: &str) -> Result<Self, Error> {
1294        let mut relays = Vec::new();
1295        for token in content.split_whitespace() {
1296            let (fingerprint, nickname) = parse_relay_endpoint(token);
1297            relays.push((fingerprint, nickname));
1298        }
1299        Ok(Self {
1300            relays,
1301            raw_content: content.to_string(),
1302            arrived_at: Instant::now(),
1303        })
1304    }
1305}
1306
1307/// Event indicating that Tor received a signal.
1308///
1309/// This event is emitted when Tor receives a signal, either from the
1310/// operating system or via the control protocol's `SIGNAL` command.
1311///
1312/// # Signals
1313///
1314/// Common signals include:
1315/// - [`Signal::Newnym`] - Request new circuits
1316/// - [`Signal::Reload`] - Reload configuration
1317/// - [`Signal::Shutdown`] - Graceful shutdown
1318/// - [`Signal::Halt`] - Immediate shutdown
1319///
1320/// # Example
1321///
1322/// ```rust,ignore
1323/// use stem_rs::events::SignalEvent;
1324/// use stem_rs::Signal;
1325///
1326/// fn handle_signal(event: &SignalEvent) {
1327///     match event.signal {
1328///         Signal::Newnym => println!("New identity requested"),
1329///         Signal::Shutdown => println!("Tor is shutting down"),
1330///         _ => println!("Received signal: {:?}", event.signal),
1331///     }
1332/// }
1333/// ```
1334///
1335/// # See Also
1336///
1337/// - [`Signal`](crate::Signal) - Signal types
1338#[derive(Debug, Clone)]
1339pub struct SignalEvent {
1340    /// The signal that was received.
1341    pub signal: Signal,
1342    raw_content: String,
1343    arrived_at: Instant,
1344}
1345
1346impl Event for SignalEvent {
1347    fn event_type(&self) -> EventType {
1348        EventType::Signal
1349    }
1350    fn raw_content(&self) -> &str {
1351        &self.raw_content
1352    }
1353    fn arrived_at(&self) -> Instant {
1354        self.arrived_at
1355    }
1356}
1357
1358impl SignalEvent {
1359    /// Parses a signal event from raw control protocol content.
1360    ///
1361    /// # Arguments
1362    ///
1363    /// * `content` - The event content after the event type
1364    ///
1365    /// # Errors
1366    ///
1367    /// Returns [`Error::Protocol`] if the signal is unrecognized.
1368    pub fn parse(content: &str) -> Result<Self, Error> {
1369        let signal = parse_signal(content.trim())?;
1370        Ok(Self {
1371            signal,
1372            raw_content: content.to_string(),
1373            arrived_at: Instant::now(),
1374        })
1375    }
1376}
1377
1378/// Event providing status information about Tor's operation.
1379///
1380/// Status events provide structured information about Tor's operational
1381/// state, including bootstrap progress, circuit establishment, and
1382/// various warnings or errors.
1383///
1384/// # Status Types
1385///
1386/// Events are categorized by type:
1387/// - [`StatusType::General`] - General status (e.g., consensus arrived)
1388/// - [`StatusType::Client`] - Client-specific status (e.g., bootstrap progress)
1389/// - [`StatusType::Server`] - Server-specific status (e.g., reachability checks)
1390///
1391/// # Bootstrap Progress
1392///
1393/// The most common use of status events is tracking bootstrap progress.
1394/// Look for `action == "BOOTSTRAP"` and check the `PROGRESS` argument.
1395///
1396/// # Example
1397///
1398/// ```rust,ignore
1399/// use stem_rs::events::StatusEvent;
1400/// use stem_rs::StatusType;
1401///
1402/// fn handle_status(event: &StatusEvent) {
1403///     if event.action == "BOOTSTRAP" {
1404///         if let Some(progress) = event.arguments.get("PROGRESS") {
1405///             println!("Bootstrap progress: {}%", progress);
1406///         }
1407///         if let Some(summary) = event.arguments.get("SUMMARY") {
1408///             println!("Status: {}", summary);
1409///         }
1410///     }
1411/// }
1412/// ```
1413///
1414/// # See Also
1415///
1416/// - [`StatusType`](crate::StatusType) - Status event types
1417/// - [`Runlevel`](crate::Runlevel) - Severity levels
1418#[derive(Debug, Clone)]
1419pub struct StatusEvent {
1420    /// Type of status event (General, Client, or Server).
1421    pub status_type: StatusType,
1422    /// Severity level of the status message.
1423    pub runlevel: Runlevel,
1424    /// Action or event name (e.g., "BOOTSTRAP", "CIRCUIT_ESTABLISHED").
1425    pub action: String,
1426    /// Key-value arguments providing additional details.
1427    pub arguments: HashMap<String, String>,
1428    raw_content: String,
1429    arrived_at: Instant,
1430}
1431
1432impl Event for StatusEvent {
1433    fn event_type(&self) -> EventType {
1434        EventType::Status
1435    }
1436    fn raw_content(&self) -> &str {
1437        &self.raw_content
1438    }
1439    fn arrived_at(&self) -> Instant {
1440        self.arrived_at
1441    }
1442}
1443
1444impl StatusEvent {
1445    /// Parses a status event from raw control protocol content.
1446    ///
1447    /// # Arguments
1448    ///
1449    /// * `status_type` - The type of status event
1450    /// * `content` - The event content after the event type
1451    ///
1452    /// # Event Format
1453    ///
1454    /// ```text
1455    /// Runlevel Action [Key=Value ...]
1456    /// ```
1457    ///
1458    /// # Errors
1459    ///
1460    /// Returns [`Error::Protocol`] if:
1461    /// - Required fields are missing
1462    /// - The runlevel is unrecognized
1463    pub fn parse(status_type: StatusType, content: &str) -> Result<Self, Error> {
1464        let mut line = ControlLine::new(content);
1465        let runlevel_str = line.pop(false, false)?;
1466        let action = line.pop(false, false)?;
1467        let runlevel = parse_runlevel(&runlevel_str)?;
1468
1469        let mut arguments = HashMap::new();
1470        while !line.is_empty() {
1471            if line.peek_key().is_some() {
1472                let quoted = line.is_next_mapping(None, true);
1473                let (k, v) = line.pop_mapping(quoted, quoted)?;
1474                arguments.insert(k, v);
1475            } else {
1476                let _ = line.pop(false, false)?;
1477            }
1478        }
1479
1480        Ok(Self {
1481            status_type,
1482            runlevel,
1483            action,
1484            arguments,
1485            raw_content: content.to_string(),
1486            arrived_at: Instant::now(),
1487        })
1488    }
1489}
1490
1491/// Event indicating that Tor's configuration has changed.
1492///
1493/// This event is emitted when configuration options are modified, either
1494/// through `SETCONF` commands or by reloading the configuration file.
1495///
1496/// # Changed vs Unset
1497///
1498/// - `changed` - Options that were set to new values
1499/// - `unset` - Options that were reset to defaults
1500///
1501/// Options can have multiple values (e.g., `ExitPolicy`), so `changed`
1502/// maps option names to a list of values.
1503///
1504/// # Example
1505///
1506/// ```rust,ignore
1507/// use stem_rs::events::ConfChangedEvent;
1508///
1509/// fn handle_conf_changed(event: &ConfChangedEvent) {
1510///     for (option, values) in &event.changed {
1511///         println!("Changed: {} = {:?}", option, values);
1512///     }
1513///     for option in &event.unset {
1514///         println!("Unset: {}", option);
1515///     }
1516/// }
1517/// ```
1518#[derive(Debug, Clone)]
1519pub struct ConfChangedEvent {
1520    /// Options that were changed, mapped to their new values.
1521    pub changed: HashMap<String, Vec<String>>,
1522    /// Options that were unset (reset to defaults).
1523    pub unset: Vec<String>,
1524    raw_content: String,
1525    arrived_at: Instant,
1526}
1527
1528impl Event for ConfChangedEvent {
1529    fn event_type(&self) -> EventType {
1530        EventType::ConfChanged
1531    }
1532    fn raw_content(&self) -> &str {
1533        &self.raw_content
1534    }
1535    fn arrived_at(&self) -> Instant {
1536        self.arrived_at
1537    }
1538}
1539
1540impl ConfChangedEvent {
1541    /// Parses a configuration changed event from multi-line content.
1542    ///
1543    /// # Arguments
1544    ///
1545    /// * `lines` - The event content lines (excluding header/footer)
1546    ///
1547    /// # Event Format
1548    ///
1549    /// Each line is either:
1550    /// - `Key=Value` - Option set to a value
1551    /// - `Key` - Option unset
1552    ///
1553    /// # Errors
1554    ///
1555    /// This method currently does not return errors but returns `Result`
1556    /// for API consistency.
1557    pub fn parse(lines: &[String]) -> Result<Self, Error> {
1558        let mut changed: HashMap<String, Vec<String>> = HashMap::new();
1559        let mut unset = Vec::new();
1560
1561        for line in lines {
1562            if let Some(eq_pos) = line.find('=') {
1563                let key = line[..eq_pos].to_string();
1564                let value = line[eq_pos + 1..].to_string();
1565                changed.entry(key).or_default().push(value);
1566            } else if !line.is_empty() {
1567                unset.push(line.clone());
1568            }
1569        }
1570
1571        Ok(Self {
1572            changed,
1573            unset,
1574            raw_content: lines.join("\n"),
1575            arrived_at: Instant::now(),
1576        })
1577    }
1578}
1579
1580/// Event indicating network connectivity status.
1581///
1582/// This event is emitted when Tor's view of network liveness changes.
1583/// It indicates whether Tor believes the network is reachable.
1584///
1585/// # Status Values
1586///
1587/// - `"UP"` - Network is reachable
1588/// - `"DOWN"` - Network is unreachable
1589///
1590/// # Example
1591///
1592/// ```rust,ignore
1593/// use stem_rs::events::NetworkLivenessEvent;
1594///
1595/// fn handle_liveness(event: &NetworkLivenessEvent) {
1596///     match event.status.as_str() {
1597///         "UP" => println!("Network is up"),
1598///         "DOWN" => println!("Network is down"),
1599///         _ => println!("Unknown network status: {}", event.status),
1600///     }
1601/// }
1602/// ```
1603#[derive(Debug, Clone)]
1604pub struct NetworkLivenessEvent {
1605    /// Network status ("UP" or "DOWN").
1606    pub status: String,
1607    raw_content: String,
1608    arrived_at: Instant,
1609}
1610
1611impl Event for NetworkLivenessEvent {
1612    fn event_type(&self) -> EventType {
1613        EventType::NetworkLiveness
1614    }
1615    fn raw_content(&self) -> &str {
1616        &self.raw_content
1617    }
1618    fn arrived_at(&self) -> Instant {
1619        self.arrived_at
1620    }
1621}
1622
1623impl NetworkLivenessEvent {
1624    /// Parses a network liveness event from raw control protocol content.
1625    ///
1626    /// # Arguments
1627    ///
1628    /// * `content` - The event content after the event type
1629    ///
1630    /// # Errors
1631    ///
1632    /// This method currently does not return errors but returns `Result`
1633    /// for API consistency.
1634    pub fn parse(content: &str) -> Result<Self, Error> {
1635        let status = content.split_whitespace().next().unwrap_or("").to_string();
1636        Ok(Self {
1637            status,
1638            raw_content: content.to_string(),
1639            arrived_at: Instant::now(),
1640        })
1641    }
1642}
1643
1644/// Event providing bandwidth information for a specific circuit.
1645///
1646/// Unlike [`BandwidthEvent`] which provides aggregate bandwidth, this event
1647/// tracks bandwidth usage per circuit. This is useful for monitoring
1648/// individual connections or identifying high-bandwidth circuits.
1649///
1650/// # Example
1651///
1652/// ```rust,ignore
1653/// use stem_rs::events::CircuitBandwidthEvent;
1654///
1655/// fn handle_circ_bw(event: &CircuitBandwidthEvent) {
1656///     println!("Circuit {} bandwidth: {} read, {} written",
1657///         event.id, event.read, event.written);
1658///     if let Some(time) = &event.time {
1659///         println!("  at {}", time);
1660///     }
1661/// }
1662/// ```
1663///
1664/// # See Also
1665///
1666/// - [`BandwidthEvent`] - Aggregate bandwidth
1667/// - [`ConnectionBandwidthEvent`] - Per-connection bandwidth
1668#[derive(Debug, Clone)]
1669pub struct CircuitBandwidthEvent {
1670    /// Circuit identifier.
1671    pub id: CircuitId,
1672    /// Bytes read on this circuit.
1673    pub read: u64,
1674    /// Bytes written on this circuit.
1675    pub written: u64,
1676    /// Timestamp of the measurement (if available).
1677    pub time: Option<DateTime<Utc>>,
1678    raw_content: String,
1679    arrived_at: Instant,
1680}
1681
1682impl Event for CircuitBandwidthEvent {
1683    fn event_type(&self) -> EventType {
1684        EventType::CircBw
1685    }
1686    fn raw_content(&self) -> &str {
1687        &self.raw_content
1688    }
1689    fn arrived_at(&self) -> Instant {
1690        self.arrived_at
1691    }
1692}
1693
1694impl CircuitBandwidthEvent {
1695    /// Parses a circuit bandwidth event from raw control protocol content.
1696    ///
1697    /// # Arguments
1698    ///
1699    /// * `content` - The event content after the event type
1700    ///
1701    /// # Event Format
1702    ///
1703    /// ```text
1704    /// ID=CircuitID READ=bytes WRITTEN=bytes [TIME=timestamp]
1705    /// ```
1706    ///
1707    /// # Errors
1708    ///
1709    /// Returns [`Error::Protocol`] if:
1710    /// - Required fields (ID, READ, WRITTEN) are missing
1711    /// - Numeric values cannot be parsed
1712    pub fn parse(content: &str) -> Result<Self, Error> {
1713        let mut line = ControlLine::new(content);
1714        let mut id = None;
1715        let mut read = None;
1716        let mut written = None;
1717        let mut time = None;
1718
1719        while !line.is_empty() {
1720            if line.is_next_mapping(Some("ID"), false) {
1721                let (_, v) = line.pop_mapping(false, false)?;
1722                id = Some(CircuitId::new(v));
1723            } else if line.is_next_mapping(Some("READ"), false) {
1724                let (_, v) = line.pop_mapping(false, false)?;
1725                read = Some(
1726                    v.parse()
1727                        .map_err(|_| Error::Protocol(format!("invalid READ value: {}", v)))?,
1728                );
1729            } else if line.is_next_mapping(Some("WRITTEN"), false) {
1730                let (_, v) = line.pop_mapping(false, false)?;
1731                written = Some(
1732                    v.parse()
1733                        .map_err(|_| Error::Protocol(format!("invalid WRITTEN value: {}", v)))?,
1734                );
1735            } else if line.is_next_mapping(Some("TIME"), false) {
1736                let (_, v) = line.pop_mapping(false, false)?;
1737                time = parse_iso_timestamp(&v).ok();
1738            } else {
1739                let _ = line.pop(false, false)?;
1740            }
1741        }
1742
1743        Ok(Self {
1744            id: id.ok_or_else(|| Error::Protocol("missing ID in CIRC_BW".to_string()))?,
1745            read: read.ok_or_else(|| Error::Protocol("missing READ in CIRC_BW".to_string()))?,
1746            written: written
1747                .ok_or_else(|| Error::Protocol("missing WRITTEN in CIRC_BW".to_string()))?,
1748            time,
1749            raw_content: content.to_string(),
1750            arrived_at: Instant::now(),
1751        })
1752    }
1753}
1754
1755/// Event providing bandwidth information for a specific connection.
1756///
1757/// This event tracks bandwidth usage per connection, categorized by
1758/// connection type (OR, Dir, Exit). Useful for detailed bandwidth
1759/// analysis and monitoring.
1760///
1761/// # Connection Types
1762///
1763/// - [`ConnectionType::Or`] - Onion Router connections (relay-to-relay)
1764/// - [`ConnectionType::Dir`] - Directory connections
1765/// - [`ConnectionType::Exit`] - Exit connections to the internet
1766///
1767/// # Example
1768///
1769/// ```rust,ignore
1770/// use stem_rs::events::ConnectionBandwidthEvent;
1771/// use stem_rs::ConnectionType;
1772///
1773/// fn handle_conn_bw(event: &ConnectionBandwidthEvent) {
1774///     let type_str = match event.conn_type {
1775///         ConnectionType::Or => "OR",
1776///         ConnectionType::Dir => "Dir",
1777///         ConnectionType::Exit => "Exit",
1778///     };
1779///     println!("{} connection {}: {} read, {} written",
1780///         type_str, event.id, event.read, event.written);
1781/// }
1782/// ```
1783///
1784/// # See Also
1785///
1786/// - [`BandwidthEvent`] - Aggregate bandwidth
1787/// - [`CircuitBandwidthEvent`] - Per-circuit bandwidth
1788/// - [`ConnectionType`](crate::ConnectionType) - Connection types
1789#[derive(Debug, Clone)]
1790pub struct ConnectionBandwidthEvent {
1791    /// Connection identifier.
1792    pub id: String,
1793    /// Type of connection.
1794    pub conn_type: ConnectionType,
1795    /// Bytes read on this connection.
1796    pub read: u64,
1797    /// Bytes written on this connection.
1798    pub written: u64,
1799    raw_content: String,
1800    arrived_at: Instant,
1801}
1802
1803impl Event for ConnectionBandwidthEvent {
1804    fn event_type(&self) -> EventType {
1805        EventType::ConnBw
1806    }
1807    fn raw_content(&self) -> &str {
1808        &self.raw_content
1809    }
1810    fn arrived_at(&self) -> Instant {
1811        self.arrived_at
1812    }
1813}
1814
1815impl ConnectionBandwidthEvent {
1816    /// Parses a connection bandwidth event from raw control protocol content.
1817    ///
1818    /// # Arguments
1819    ///
1820    /// * `content` - The event content after the event type
1821    ///
1822    /// # Event Format
1823    ///
1824    /// ```text
1825    /// ID=ConnID TYPE=ConnType READ=bytes WRITTEN=bytes
1826    /// ```
1827    ///
1828    /// # Errors
1829    ///
1830    /// Returns [`Error::Protocol`] if:
1831    /// - Required fields (ID, TYPE, READ, WRITTEN) are missing
1832    /// - The connection type is unrecognized
1833    /// - Numeric values cannot be parsed
1834    pub fn parse(content: &str) -> Result<Self, Error> {
1835        let mut line = ControlLine::new(content);
1836        let mut id = None;
1837        let mut conn_type = None;
1838        let mut read = None;
1839        let mut written = None;
1840
1841        while !line.is_empty() {
1842            if line.is_next_mapping(Some("ID"), false) {
1843                let (_, v) = line.pop_mapping(false, false)?;
1844                id = Some(v);
1845            } else if line.is_next_mapping(Some("TYPE"), false) {
1846                let (_, v) = line.pop_mapping(false, false)?;
1847                conn_type = Some(parse_connection_type(&v)?);
1848            } else if line.is_next_mapping(Some("READ"), false) {
1849                let (_, v) = line.pop_mapping(false, false)?;
1850                read = Some(
1851                    v.parse()
1852                        .map_err(|_| Error::Protocol(format!("invalid READ value: {}", v)))?,
1853                );
1854            } else if line.is_next_mapping(Some("WRITTEN"), false) {
1855                let (_, v) = line.pop_mapping(false, false)?;
1856                written = Some(
1857                    v.parse()
1858                        .map_err(|_| Error::Protocol(format!("invalid WRITTEN value: {}", v)))?,
1859                );
1860            } else {
1861                let _ = line.pop(false, false)?;
1862            }
1863        }
1864
1865        Ok(Self {
1866            id: id.ok_or_else(|| Error::Protocol("missing ID in CONN_BW".to_string()))?,
1867            conn_type: conn_type
1868                .ok_or_else(|| Error::Protocol("missing TYPE in CONN_BW".to_string()))?,
1869            read: read.ok_or_else(|| Error::Protocol("missing READ in CONN_BW".to_string()))?,
1870            written: written
1871                .ok_or_else(|| Error::Protocol("missing WRITTEN in CONN_BW".to_string()))?,
1872            raw_content: content.to_string(),
1873            arrived_at: Instant::now(),
1874        })
1875    }
1876}
1877
1878/// Event triggered when fetching or uploading hidden service descriptors.
1879///
1880/// This event tracks the lifecycle of hidden service descriptor operations,
1881/// including requests, uploads, and failures. It's essential for monitoring
1882/// hidden service connectivity.
1883///
1884/// # Actions
1885///
1886/// The `action` field indicates the operation:
1887/// - [`HsDescAction::Requested`] - Descriptor fetch requested
1888/// - [`HsDescAction::Received`] - Descriptor successfully received
1889/// - [`HsDescAction::Uploaded`] - Descriptor successfully uploaded
1890/// - [`HsDescAction::Failed`] - Operation failed (check `reason`)
1891/// - [`HsDescAction::Created`] - New descriptor created
1892/// - [`HsDescAction::Ignore`] - Descriptor ignored
1893///
1894/// # Directory Information
1895///
1896/// The `directory` field contains the HSDir relay handling the request.
1897/// The fingerprint and nickname are extracted into separate fields for
1898/// convenience.
1899///
1900/// # Example
1901///
1902/// ```rust,ignore
1903/// use stem_rs::events::HsDescEvent;
1904/// use stem_rs::HsDescAction;
1905///
1906/// fn handle_hsdesc(event: &HsDescEvent) {
1907///     match event.action {
1908///         HsDescAction::Received => {
1909///             println!("Got descriptor for {} from {:?}",
1910///                 event.address, event.directory_nickname);
1911///         }
1912///         HsDescAction::Failed => {
1913///             println!("Failed to get descriptor for {}: {:?}",
1914///                 event.address, event.reason);
1915///         }
1916///         _ => {}
1917///     }
1918/// }
1919/// ```
1920///
1921/// # See Also
1922///
1923/// - [`HsDescAction`](crate::HsDescAction) - Descriptor actions
1924/// - [`HsDescReason`](crate::HsDescReason) - Failure reasons
1925/// - [`HsAuth`](crate::HsAuth) - Authentication types
1926#[derive(Debug, Clone)]
1927pub struct HsDescEvent {
1928    /// Action being performed on the descriptor.
1929    pub action: HsDescAction,
1930    /// Hidden service address (onion address).
1931    pub address: String,
1932    /// Authentication type for the hidden service.
1933    pub authentication: Option<HsAuth>,
1934    /// Full directory relay string.
1935    pub directory: Option<String>,
1936    /// Directory relay fingerprint.
1937    pub directory_fingerprint: Option<String>,
1938    /// Directory relay nickname.
1939    pub directory_nickname: Option<String>,
1940    /// Descriptor identifier.
1941    pub descriptor_id: Option<String>,
1942    /// Reason for failure (if action is Failed).
1943    pub reason: Option<HsDescReason>,
1944    raw_content: String,
1945    arrived_at: Instant,
1946}
1947
1948impl Event for HsDescEvent {
1949    fn event_type(&self) -> EventType {
1950        EventType::HsDesc
1951    }
1952    fn raw_content(&self) -> &str {
1953        &self.raw_content
1954    }
1955    fn arrived_at(&self) -> Instant {
1956        self.arrived_at
1957    }
1958}
1959
1960impl HsDescEvent {
1961    /// Parses a hidden service descriptor event from raw control protocol content.
1962    ///
1963    /// # Arguments
1964    ///
1965    /// * `content` - The event content after the event type
1966    ///
1967    /// # Event Format
1968    ///
1969    /// ```text
1970    /// Action Address AuthType [Directory] [DescriptorID] [REASON=...]
1971    /// ```
1972    ///
1973    /// # Errors
1974    ///
1975    /// Returns [`Error::Protocol`] if:
1976    /// - Required fields are missing
1977    /// - The action is unrecognized
1978    pub fn parse(content: &str) -> Result<Self, Error> {
1979        let mut line = ControlLine::new(content);
1980        let action_str = line.pop(false, false)?;
1981        let address = line.pop(false, false)?;
1982        let auth_str = line.pop(false, false)?;
1983
1984        let action = parse_hs_desc_action(&action_str)?;
1985        let authentication = parse_hs_auth(&auth_str).ok();
1986
1987        let mut directory = None;
1988        let mut directory_fingerprint = None;
1989        let mut directory_nickname = None;
1990        let mut descriptor_id = None;
1991        let mut reason = None;
1992
1993        if !line.is_empty() {
1994            let dir_token = line.pop(false, false)?;
1995            if dir_token != "UNKNOWN" {
1996                directory = Some(dir_token.clone());
1997                let (fp, nick) = parse_relay_endpoint(&dir_token);
1998                directory_fingerprint = Some(fp);
1999                directory_nickname = nick;
2000            }
2001        }
2002
2003        if !line.is_empty() && line.peek_key().is_none_or(|k| k != "REASON") {
2004            descriptor_id = Some(line.pop(false, false)?);
2005        }
2006
2007        while !line.is_empty() {
2008            if line.is_next_mapping(Some("REASON"), false) {
2009                let (_, r) = line.pop_mapping(false, false)?;
2010                reason = parse_hs_desc_reason(&r).ok();
2011            } else {
2012                let _ = line.pop(false, false)?;
2013            }
2014        }
2015
2016        Ok(Self {
2017            action,
2018            address,
2019            authentication,
2020            directory,
2021            directory_fingerprint,
2022            directory_nickname,
2023            descriptor_id,
2024            reason,
2025            raw_content: content.to_string(),
2026            arrived_at: Instant::now(),
2027        })
2028    }
2029}
2030
2031/// Parses a circuit status string into a [`CircStatus`] enum variant.
2032///
2033/// Converts a case-insensitive string representation of a circuit status
2034/// from the Tor control protocol into the corresponding enum variant.
2035///
2036/// # Arguments
2037///
2038/// * `s` - The circuit status string to parse (e.g., "LAUNCHED", "BUILT")
2039///
2040/// # Returns
2041///
2042/// * `Ok(CircStatus)` - The parsed circuit status variant
2043/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2044///
2045/// # Supported Values
2046///
2047/// - `LAUNCHED` - Circuit construction has begun
2048/// - `BUILT` - Circuit is fully constructed and ready for use
2049/// - `GUARD_WAIT` - Waiting for guard node selection
2050/// - `EXTENDED` - Circuit has been extended by one hop
2051/// - `FAILED` - Circuit construction failed
2052/// - `CLOSED` - Circuit has been closed
2053fn parse_circ_status(s: &str) -> Result<CircStatus, Error> {
2054    match s.to_uppercase().as_str() {
2055        "LAUNCHED" => Ok(CircStatus::Launched),
2056        "BUILT" => Ok(CircStatus::Built),
2057        "GUARD_WAIT" => Ok(CircStatus::GuardWait),
2058        "EXTENDED" => Ok(CircStatus::Extended),
2059        "FAILED" => Ok(CircStatus::Failed),
2060        "CLOSED" => Ok(CircStatus::Closed),
2061        _ => Err(Error::Protocol(format!("unknown circuit status: {}", s))),
2062    }
2063}
2064
2065/// Parses a stream status string into a [`StreamStatus`] enum variant.
2066///
2067/// Converts a case-insensitive string representation of a stream status
2068/// from the Tor control protocol into the corresponding enum variant.
2069///
2070/// # Arguments
2071///
2072/// * `s` - The stream status string to parse (e.g., "NEW", "SUCCEEDED")
2073///
2074/// # Returns
2075///
2076/// * `Ok(StreamStatus)` - The parsed stream status variant
2077/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2078///
2079/// # Supported Values
2080///
2081/// - `NEW` - New stream awaiting connection
2082/// - `NEWRESOLVE` - New stream awaiting DNS resolution
2083/// - `REMAP` - Address has been remapped
2084/// - `SENTCONNECT` - Connect request sent to exit
2085/// - `SENTRESOLVE` - Resolve request sent to exit
2086/// - `SUCCEEDED` - Stream connection succeeded
2087/// - `FAILED` - Stream connection failed
2088/// - `DETACHED` - Stream detached from circuit
2089/// - `CONTROLLER_WAIT` - Waiting for controller attachment
2090/// - `CLOSED` - Stream has been closed
2091fn parse_stream_status(s: &str) -> Result<StreamStatus, Error> {
2092    match s.to_uppercase().as_str() {
2093        "NEW" => Ok(StreamStatus::New),
2094        "NEWRESOLVE" => Ok(StreamStatus::NewResolve),
2095        "REMAP" => Ok(StreamStatus::Remap),
2096        "SENTCONNECT" => Ok(StreamStatus::SentConnect),
2097        "SENTRESOLVE" => Ok(StreamStatus::SentResolve),
2098        "SUCCEEDED" => Ok(StreamStatus::Succeeded),
2099        "FAILED" => Ok(StreamStatus::Failed),
2100        "DETACHED" => Ok(StreamStatus::Detached),
2101        "CONTROLLER_WAIT" => Ok(StreamStatus::ControllerWait),
2102        "CLOSED" => Ok(StreamStatus::Closed),
2103        _ => Err(Error::Protocol(format!("unknown stream status: {}", s))),
2104    }
2105}
2106
2107/// Parses an OR (Onion Router) connection status string into an [`OrStatus`] enum variant.
2108///
2109/// Converts a case-insensitive string representation of an OR connection status
2110/// from the Tor control protocol into the corresponding enum variant.
2111///
2112/// # Arguments
2113///
2114/// * `s` - The OR status string to parse (e.g., "NEW", "CONNECTED")
2115///
2116/// # Returns
2117///
2118/// * `Ok(OrStatus)` - The parsed OR connection status variant
2119/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2120///
2121/// # Supported Values
2122///
2123/// - `NEW` - New OR connection initiated
2124/// - `LAUNCHED` - Connection attempt launched
2125/// - `CONNECTED` - Successfully connected to OR
2126/// - `FAILED` - Connection attempt failed
2127/// - `CLOSED` - Connection has been closed
2128fn parse_or_status(s: &str) -> Result<OrStatus, Error> {
2129    match s.to_uppercase().as_str() {
2130        "NEW" => Ok(OrStatus::New),
2131        "LAUNCHED" => Ok(OrStatus::Launched),
2132        "CONNECTED" => Ok(OrStatus::Connected),
2133        "FAILED" => Ok(OrStatus::Failed),
2134        "CLOSED" => Ok(OrStatus::Closed),
2135        _ => Err(Error::Protocol(format!("unknown OR status: {}", s))),
2136    }
2137}
2138
2139/// Parses a guard type string into a [`GuardType`] enum variant.
2140///
2141/// Converts a case-insensitive string representation of a guard node type
2142/// from the Tor control protocol into the corresponding enum variant.
2143///
2144/// # Arguments
2145///
2146/// * `s` - The guard type string to parse (currently only "ENTRY")
2147///
2148/// # Returns
2149///
2150/// * `Ok(GuardType)` - The parsed guard type variant
2151/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2152///
2153/// # Supported Values
2154///
2155/// - `ENTRY` - Entry guard node
2156fn parse_guard_type(s: &str) -> Result<GuardType, Error> {
2157    match s.to_uppercase().as_str() {
2158        "ENTRY" => Ok(GuardType::Entry),
2159        _ => Err(Error::Protocol(format!("unknown guard type: {}", s))),
2160    }
2161}
2162
2163/// Parses a guard status string into a [`GuardStatus`] enum variant.
2164///
2165/// Converts a case-insensitive string representation of a guard node status
2166/// from the Tor control protocol into the corresponding enum variant.
2167///
2168/// # Arguments
2169///
2170/// * `s` - The guard status string to parse (e.g., "NEW", "UP", "DOWN")
2171///
2172/// # Returns
2173///
2174/// * `Ok(GuardStatus)` - The parsed guard status variant
2175/// * `Err(Error::Protocol)` - If the string doesn't match any known status
2176///
2177/// # Supported Values
2178///
2179/// - `NEW` - Guard node newly selected
2180/// - `DROPPED` - Guard node dropped from selection
2181/// - `UP` - Guard node is reachable
2182/// - `DOWN` - Guard node is unreachable
2183/// - `BAD` - Guard node marked as bad
2184/// - `GOOD` - Guard node marked as good
2185fn parse_guard_status(s: &str) -> Result<GuardStatus, Error> {
2186    match s.to_uppercase().as_str() {
2187        "NEW" => Ok(GuardStatus::New),
2188        "DROPPED" => Ok(GuardStatus::Dropped),
2189        "UP" => Ok(GuardStatus::Up),
2190        "DOWN" => Ok(GuardStatus::Down),
2191        "BAD" => Ok(GuardStatus::Bad),
2192        "GOOD" => Ok(GuardStatus::Good),
2193        _ => Err(Error::Protocol(format!("unknown guard status: {}", s))),
2194    }
2195}
2196
2197/// Parses a timeout set type string into a [`TimeoutSetType`] enum variant.
2198///
2199/// Converts a case-insensitive string representation of a circuit build
2200/// timeout set type from the Tor control protocol into the corresponding enum variant.
2201///
2202/// # Arguments
2203///
2204/// * `s` - The timeout set type string to parse (e.g., "COMPUTED", "RESET")
2205///
2206/// # Returns
2207///
2208/// * `Ok(TimeoutSetType)` - The parsed timeout set type variant
2209/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2210///
2211/// # Supported Values
2212///
2213/// - `COMPUTED` - Timeout computed from circuit build times
2214/// - `RESET` - Timeout values have been reset
2215/// - `SUSPENDED` - Timeout learning suspended
2216/// - `DISCARD` - Timeout values discarded
2217/// - `RESUME` - Timeout learning resumed
2218fn parse_timeout_set_type(s: &str) -> Result<TimeoutSetType, Error> {
2219    match s.to_uppercase().as_str() {
2220        "COMPUTED" => Ok(TimeoutSetType::Computed),
2221        "RESET" => Ok(TimeoutSetType::Reset),
2222        "SUSPENDED" => Ok(TimeoutSetType::Suspended),
2223        "DISCARD" => Ok(TimeoutSetType::Discard),
2224        "RESUME" => Ok(TimeoutSetType::Resume),
2225        _ => Err(Error::Protocol(format!("unknown timeout set type: {}", s))),
2226    }
2227}
2228
2229/// Parses a log runlevel string into a [`Runlevel`] enum variant.
2230///
2231/// Converts a case-insensitive string representation of a Tor log severity
2232/// level from the Tor control protocol into the corresponding enum variant.
2233///
2234/// # Arguments
2235///
2236/// * `s` - The runlevel string to parse (e.g., "DEBUG", "INFO", "WARN")
2237///
2238/// # Returns
2239///
2240/// * `Ok(Runlevel)` - The parsed runlevel variant
2241/// * `Err(Error::Protocol)` - If the string doesn't match any known level
2242///
2243/// # Supported Values
2244///
2245/// - `DEBUG` - Debug-level messages (most verbose)
2246/// - `INFO` - Informational messages
2247/// - `NOTICE` - Normal operational messages
2248/// - `WARN` - Warning messages
2249/// - `ERR` - Error messages (most severe)
2250fn parse_runlevel(s: &str) -> Result<Runlevel, Error> {
2251    match s.to_uppercase().as_str() {
2252        "DEBUG" => Ok(Runlevel::Debug),
2253        "INFO" => Ok(Runlevel::Info),
2254        "NOTICE" => Ok(Runlevel::Notice),
2255        "WARN" => Ok(Runlevel::Warn),
2256        "ERR" => Ok(Runlevel::Err),
2257        _ => Err(Error::Protocol(format!("unknown runlevel: {}", s))),
2258    }
2259}
2260
2261/// Parses a signal string into a [`Signal`] enum variant.
2262///
2263/// Converts a case-insensitive string representation of a Tor signal
2264/// from the Tor control protocol into the corresponding enum variant.
2265/// Supports both signal names and their Unix signal equivalents.
2266///
2267/// # Arguments
2268///
2269/// * `s` - The signal string to parse (e.g., "RELOAD", "HUP", "NEWNYM")
2270///
2271/// # Returns
2272///
2273/// * `Ok(Signal)` - The parsed signal variant
2274/// * `Err(Error::Protocol)` - If the string doesn't match any known signal
2275///
2276/// # Supported Values
2277///
2278/// - `RELOAD` or `HUP` - Reload configuration
2279/// - `SHUTDOWN` or `INT` - Controlled shutdown
2280/// - `DUMP` or `USR1` - Dump statistics
2281/// - `DEBUG` or `USR2` - Switch to debug logging
2282/// - `HALT` or `TERM` - Immediate shutdown
2283/// - `NEWNYM` - Request new circuits
2284/// - `CLEARDNSCACHE` - Clear DNS cache
2285/// - `HEARTBEAT` - Trigger heartbeat log
2286/// - `ACTIVE` - Wake from dormant mode
2287/// - `DORMANT` - Enter dormant mode
2288fn parse_signal(s: &str) -> Result<Signal, Error> {
2289    match s.to_uppercase().as_str() {
2290        "RELOAD" | "HUP" => Ok(Signal::Reload),
2291        "SHUTDOWN" | "INT" => Ok(Signal::Shutdown),
2292        "DUMP" | "USR1" => Ok(Signal::Dump),
2293        "DEBUG" | "USR2" => Ok(Signal::Debug),
2294        "HALT" | "TERM" => Ok(Signal::Halt),
2295        "NEWNYM" => Ok(Signal::Newnym),
2296        "CLEARDNSCACHE" => Ok(Signal::ClearDnsCache),
2297        "HEARTBEAT" => Ok(Signal::Heartbeat),
2298        "ACTIVE" => Ok(Signal::Active),
2299        "DORMANT" => Ok(Signal::Dormant),
2300        _ => Err(Error::Protocol(format!("unknown signal: {}", s))),
2301    }
2302}
2303
2304/// Parses a connection type string into a [`ConnectionType`] enum variant.
2305///
2306/// Converts a case-insensitive string representation of a Tor connection type
2307/// from the Tor control protocol into the corresponding enum variant.
2308///
2309/// # Arguments
2310///
2311/// * `s` - The connection type string to parse (e.g., "OR", "DIR", "EXIT")
2312///
2313/// # Returns
2314///
2315/// * `Ok(ConnectionType)` - The parsed connection type variant
2316/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2317///
2318/// # Supported Values
2319///
2320/// - `OR` - Onion Router connection (relay-to-relay)
2321/// - `DIR` - Directory connection
2322/// - `EXIT` - Exit connection to destination
2323fn parse_connection_type(s: &str) -> Result<ConnectionType, Error> {
2324    match s.to_uppercase().as_str() {
2325        "OR" => Ok(ConnectionType::Or),
2326        "DIR" => Ok(ConnectionType::Dir),
2327        "EXIT" => Ok(ConnectionType::Exit),
2328        _ => Err(Error::Protocol(format!("unknown connection type: {}", s))),
2329    }
2330}
2331
2332/// Parses a hidden service descriptor action string into an [`HsDescAction`] enum variant.
2333///
2334/// Converts a case-insensitive string representation of a hidden service
2335/// descriptor action from the Tor control protocol into the corresponding enum variant.
2336///
2337/// # Arguments
2338///
2339/// * `s` - The HS_DESC action string to parse (e.g., "REQUESTED", "RECEIVED")
2340///
2341/// # Returns
2342///
2343/// * `Ok(HsDescAction)` - The parsed action variant
2344/// * `Err(Error::Protocol)` - If the string doesn't match any known action
2345///
2346/// # Supported Values
2347///
2348/// - `REQUESTED` - Descriptor fetch requested
2349/// - `UPLOAD` - Descriptor upload initiated
2350/// - `RECEIVED` - Descriptor successfully received
2351/// - `UPLOADED` - Descriptor successfully uploaded
2352/// - `IGNORE` - Descriptor ignored
2353/// - `FAILED` - Descriptor operation failed
2354/// - `CREATED` - Descriptor created locally
2355fn parse_hs_desc_action(s: &str) -> Result<HsDescAction, Error> {
2356    match s.to_uppercase().as_str() {
2357        "REQUESTED" => Ok(HsDescAction::Requested),
2358        "UPLOAD" => Ok(HsDescAction::Upload),
2359        "RECEIVED" => Ok(HsDescAction::Received),
2360        "UPLOADED" => Ok(HsDescAction::Uploaded),
2361        "IGNORE" => Ok(HsDescAction::Ignore),
2362        "FAILED" => Ok(HsDescAction::Failed),
2363        "CREATED" => Ok(HsDescAction::Created),
2364        _ => Err(Error::Protocol(format!("unknown HS_DESC action: {}", s))),
2365    }
2366}
2367
2368/// Parses a hidden service authentication type string into an [`HsAuth`] enum variant.
2369///
2370/// Converts a case-insensitive string representation of a hidden service
2371/// authentication type from the Tor control protocol into the corresponding enum variant.
2372///
2373/// # Arguments
2374///
2375/// * `s` - The HS auth type string to parse (e.g., "NO_AUTH", "BASIC_AUTH")
2376///
2377/// # Returns
2378///
2379/// * `Ok(HsAuth)` - The parsed authentication type variant
2380/// * `Err(Error::Protocol)` - If the string doesn't match any known type
2381///
2382/// # Supported Values
2383///
2384/// - `NO_AUTH` - No authentication required
2385/// - `BASIC_AUTH` - Basic authentication
2386/// - `STEALTH_AUTH` - Stealth authentication (more private)
2387/// - `UNKNOWN` - Unknown authentication type
2388fn parse_hs_auth(s: &str) -> Result<HsAuth, Error> {
2389    match s.to_uppercase().as_str() {
2390        "NO_AUTH" => Ok(HsAuth::NoAuth),
2391        "BASIC_AUTH" => Ok(HsAuth::BasicAuth),
2392        "STEALTH_AUTH" => Ok(HsAuth::StealthAuth),
2393        "UNKNOWN" => Ok(HsAuth::Unknown),
2394        _ => Err(Error::Protocol(format!("unknown HS auth type: {}", s))),
2395    }
2396}
2397
2398/// Parses a hidden service descriptor failure reason string into an [`HsDescReason`] enum variant.
2399///
2400/// Converts a case-insensitive string representation of a hidden service
2401/// descriptor failure reason from the Tor control protocol into the corresponding enum variant.
2402///
2403/// # Arguments
2404///
2405/// * `s` - The HS_DESC reason string to parse (e.g., "NOT_FOUND", "BAD_DESC")
2406///
2407/// # Returns
2408///
2409/// * `Ok(HsDescReason)` - The parsed reason variant
2410/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2411///
2412/// # Supported Values
2413///
2414/// - `BAD_DESC` - Descriptor was malformed or invalid
2415/// - `QUERY_REJECTED` - Query was rejected by HSDir
2416/// - `UPLOAD_REJECTED` - Upload was rejected by HSDir
2417/// - `NOT_FOUND` - Descriptor not found
2418/// - `QUERY_NO_HSDIR` - No HSDir available for query
2419/// - `QUERY_RATE_LIMITED` - Query rate limited
2420/// - `UNEXPECTED` - Unexpected error occurred
2421fn parse_hs_desc_reason(s: &str) -> Result<HsDescReason, Error> {
2422    match s.to_uppercase().as_str() {
2423        "BAD_DESC" => Ok(HsDescReason::BadDesc),
2424        "QUERY_REJECTED" => Ok(HsDescReason::QueryRejected),
2425        "UPLOAD_REJECTED" => Ok(HsDescReason::UploadRejected),
2426        "NOT_FOUND" => Ok(HsDescReason::NotFound),
2427        "QUERY_NO_HSDIR" => Ok(HsDescReason::QueryNoHsDir),
2428        "QUERY_RATE_LIMITED" => Ok(HsDescReason::QueryRateLimited),
2429        "UNEXPECTED" => Ok(HsDescReason::Unexpected),
2430        _ => Err(Error::Protocol(format!("unknown HS_DESC reason: {}", s))),
2431    }
2432}
2433
2434/// Parses a circuit purpose string into a [`CircPurpose`] enum variant.
2435///
2436/// Converts a case-insensitive string representation of a circuit purpose
2437/// from the Tor control protocol into the corresponding enum variant.
2438///
2439/// # Arguments
2440///
2441/// * `s` - The circuit purpose string to parse (e.g., "GENERAL", "HS_CLIENT_REND")
2442///
2443/// # Returns
2444///
2445/// * `Ok(CircPurpose)` - The parsed circuit purpose variant
2446/// * `Err(Error::Protocol)` - If the string doesn't match any known purpose
2447///
2448/// # Supported Values
2449///
2450/// - `GENERAL` - General-purpose circuit for user traffic
2451/// - `HS_CLIENT_INTRO` - Hidden service client introduction circuit
2452/// - `HS_CLIENT_REND` - Hidden service client rendezvous circuit
2453/// - `HS_SERVICE_INTRO` - Hidden service introduction point circuit
2454/// - `HS_SERVICE_REND` - Hidden service rendezvous circuit
2455/// - `TESTING` - Circuit for testing purposes
2456/// - `CONTROLLER` - Circuit created by controller
2457/// - `MEASURE_TIMEOUT` - Circuit for measuring build timeouts
2458/// - `HS_VANGUARDS` - Vanguard circuit for hidden services
2459/// - `PATH_BIAS_TESTING` - Circuit for path bias testing
2460/// - `CIRCUIT_PADDING` - Circuit for padding purposes
2461fn parse_circ_purpose(s: &str) -> Result<CircPurpose, Error> {
2462    match s.to_uppercase().as_str() {
2463        "GENERAL" => Ok(CircPurpose::General),
2464        "HS_CLIENT_INTRO" => Ok(CircPurpose::HsClientIntro),
2465        "HS_CLIENT_REND" => Ok(CircPurpose::HsClientRend),
2466        "HS_SERVICE_INTRO" => Ok(CircPurpose::HsServiceIntro),
2467        "HS_SERVICE_REND" => Ok(CircPurpose::HsServiceRend),
2468        "TESTING" => Ok(CircPurpose::Testing),
2469        "CONTROLLER" => Ok(CircPurpose::Controller),
2470        "MEASURE_TIMEOUT" => Ok(CircPurpose::MeasureTimeout),
2471        "HS_VANGUARDS" => Ok(CircPurpose::HsVanguards),
2472        "PATH_BIAS_TESTING" => Ok(CircPurpose::PathBiasTesting),
2473        "CIRCUIT_PADDING" => Ok(CircPurpose::CircuitPadding),
2474        _ => Err(Error::Protocol(format!("unknown circuit purpose: {}", s))),
2475    }
2476}
2477
2478/// Parses a hidden service state string into a [`HiddenServiceState`] enum variant.
2479///
2480/// Converts a case-insensitive string representation of a hidden service
2481/// circuit state from the Tor control protocol into the corresponding enum variant.
2482///
2483/// # Arguments
2484///
2485/// * `s` - The HS state string to parse (e.g., "HSCI_CONNECTING", "HSCR_JOINED")
2486///
2487/// # Returns
2488///
2489/// * `Ok(HiddenServiceState)` - The parsed hidden service state variant
2490/// * `Err(Error::Protocol)` - If the string doesn't match any known state
2491///
2492/// # Supported Values
2493///
2494/// Client Introduction (HSCI):
2495/// - `HSCI_CONNECTING` - Connecting to introduction point
2496/// - `HSCI_INTRO_SENT` - Introduction sent to service
2497/// - `HSCI_DONE` - Introduction complete
2498///
2499/// Client Rendezvous (HSCR):
2500/// - `HSCR_CONNECTING` - Connecting to rendezvous point
2501/// - `HSCR_ESTABLISHED_IDLE` - Rendezvous established, idle
2502/// - `HSCR_ESTABLISHED_WAITING` - Rendezvous established, waiting
2503/// - `HSCR_JOINED` - Rendezvous joined with service
2504///
2505/// Service Introduction (HSSI):
2506/// - `HSSI_CONNECTING` - Service connecting to intro point
2507/// - `HSSI_ESTABLISHED` - Service intro point established
2508///
2509/// Service Rendezvous (HSSR):
2510/// - `HSSR_CONNECTING` - Service connecting to rendezvous
2511/// - `HSSR_JOINED` - Service joined rendezvous
2512fn parse_hs_state(s: &str) -> Result<HiddenServiceState, Error> {
2513    match s.to_uppercase().as_str() {
2514        "HSCI_CONNECTING" => Ok(HiddenServiceState::HsciConnecting),
2515        "HSCI_INTRO_SENT" => Ok(HiddenServiceState::HsciIntroSent),
2516        "HSCI_DONE" => Ok(HiddenServiceState::HsciDone),
2517        "HSCR_CONNECTING" => Ok(HiddenServiceState::HscrConnecting),
2518        "HSCR_ESTABLISHED_IDLE" => Ok(HiddenServiceState::HscrEstablishedIdle),
2519        "HSCR_ESTABLISHED_WAITING" => Ok(HiddenServiceState::HscrEstablishedWaiting),
2520        "HSCR_JOINED" => Ok(HiddenServiceState::HscrJoined),
2521        "HSSI_CONNECTING" => Ok(HiddenServiceState::HssiConnecting),
2522        "HSSI_ESTABLISHED" => Ok(HiddenServiceState::HssiEstablished),
2523        "HSSR_CONNECTING" => Ok(HiddenServiceState::HssrConnecting),
2524        "HSSR_JOINED" => Ok(HiddenServiceState::HssrJoined),
2525        _ => Err(Error::Protocol(format!("unknown HS state: {}", s))),
2526    }
2527}
2528
2529/// Parses a circuit closure reason string into a [`CircClosureReason`] enum variant.
2530///
2531/// Converts a case-insensitive string representation of a circuit closure reason
2532/// from the Tor control protocol into the corresponding enum variant.
2533///
2534/// # Arguments
2535///
2536/// * `s` - The circuit closure reason string to parse (e.g., "FINISHED", "TIMEOUT")
2537///
2538/// # Returns
2539///
2540/// * `Ok(CircClosureReason)` - The parsed closure reason variant
2541/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2542///
2543/// # Supported Values
2544///
2545/// - `NONE` - No reason given
2546/// - `TORPROTOCOL` - Tor protocol violation
2547/// - `INTERNAL` - Internal error
2548/// - `REQUESTED` - Closure requested by client
2549/// - `HIBERNATING` - Relay is hibernating
2550/// - `RESOURCELIMIT` - Resource limit reached
2551/// - `CONNECTFAILED` - Connection to relay failed
2552/// - `OR_IDENTITY` - OR identity mismatch
2553/// - `OR_CONN_CLOSED` - OR connection closed
2554/// - `FINISHED` - Circuit finished normally
2555/// - `TIMEOUT` - Circuit timed out
2556/// - `DESTROYED` - Circuit was destroyed
2557/// - `NOPATH` - No path available
2558/// - `NOSUCHSERVICE` - Hidden service not found
2559/// - `MEASUREMENT_EXPIRED` - Measurement circuit expired
2560/// - `IP_NOW_REDUNDANT` - Introduction point now redundant
2561fn parse_circ_closure_reason(s: &str) -> Result<CircClosureReason, Error> {
2562    match s.to_uppercase().as_str() {
2563        "NONE" => Ok(CircClosureReason::None),
2564        "TORPROTOCOL" => Ok(CircClosureReason::TorProtocol),
2565        "INTERNAL" => Ok(CircClosureReason::Internal),
2566        "REQUESTED" => Ok(CircClosureReason::Requested),
2567        "HIBERNATING" => Ok(CircClosureReason::Hibernating),
2568        "RESOURCELIMIT" => Ok(CircClosureReason::ResourceLimit),
2569        "CONNECTFAILED" => Ok(CircClosureReason::ConnectFailed),
2570        "OR_IDENTITY" => Ok(CircClosureReason::OrIdentity),
2571        "OR_CONN_CLOSED" => Ok(CircClosureReason::OrConnClosed),
2572        "FINISHED" => Ok(CircClosureReason::Finished),
2573        "TIMEOUT" => Ok(CircClosureReason::Timeout),
2574        "DESTROYED" => Ok(CircClosureReason::Destroyed),
2575        "NOPATH" => Ok(CircClosureReason::NoPath),
2576        "NOSUCHSERVICE" => Ok(CircClosureReason::NoSuchService),
2577        "MEASUREMENT_EXPIRED" => Ok(CircClosureReason::MeasurementExpired),
2578        "IP_NOW_REDUNDANT" => Ok(CircClosureReason::IpNowRedundant),
2579        _ => Err(Error::Protocol(format!(
2580            "unknown circuit closure reason: {}",
2581            s
2582        ))),
2583    }
2584}
2585
2586/// Parses a stream closure reason string into a [`StreamClosureReason`] enum variant.
2587///
2588/// Converts a case-insensitive string representation of a stream closure reason
2589/// from the Tor control protocol into the corresponding enum variant.
2590///
2591/// # Arguments
2592///
2593/// * `s` - The stream closure reason string to parse (e.g., "DONE", "TIMEOUT")
2594///
2595/// # Returns
2596///
2597/// * `Ok(StreamClosureReason)` - The parsed closure reason variant
2598/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2599///
2600/// # Supported Values
2601///
2602/// - `MISC` - Miscellaneous error
2603/// - `RESOLVEFAILED` - DNS resolution failed
2604/// - `CONNECTREFUSED` - Connection refused by destination
2605/// - `EXITPOLICY` - Exit policy rejected connection
2606/// - `DESTROY` - Circuit was destroyed
2607/// - `DONE` - Stream completed normally
2608/// - `TIMEOUT` - Stream timed out
2609/// - `NOROUTE` - No route to destination
2610/// - `HIBERNATING` - Relay is hibernating
2611/// - `INTERNAL` - Internal error
2612/// - `RESOURCELIMIT` - Resource limit reached
2613/// - `CONNRESET` - Connection reset
2614/// - `TORPROTOCOL` - Tor protocol violation
2615/// - `NOTDIRECTORY` - Not a directory server
2616/// - `END` - Stream ended
2617/// - `PRIVATE_ADDR` - Private address rejected
2618fn parse_stream_closure_reason(s: &str) -> Result<StreamClosureReason, Error> {
2619    match s.to_uppercase().as_str() {
2620        "MISC" => Ok(StreamClosureReason::Misc),
2621        "RESOLVEFAILED" => Ok(StreamClosureReason::ResolveFailed),
2622        "CONNECTREFUSED" => Ok(StreamClosureReason::ConnectRefused),
2623        "EXITPOLICY" => Ok(StreamClosureReason::ExitPolicy),
2624        "DESTROY" => Ok(StreamClosureReason::Destroy),
2625        "DONE" => Ok(StreamClosureReason::Done),
2626        "TIMEOUT" => Ok(StreamClosureReason::Timeout),
2627        "NOROUTE" => Ok(StreamClosureReason::NoRoute),
2628        "HIBERNATING" => Ok(StreamClosureReason::Hibernating),
2629        "INTERNAL" => Ok(StreamClosureReason::Internal),
2630        "RESOURCELIMIT" => Ok(StreamClosureReason::ResourceLimit),
2631        "CONNRESET" => Ok(StreamClosureReason::ConnReset),
2632        "TORPROTOCOL" => Ok(StreamClosureReason::TorProtocol),
2633        "NOTDIRECTORY" => Ok(StreamClosureReason::NotDirectory),
2634        "END" => Ok(StreamClosureReason::End),
2635        "PRIVATE_ADDR" => Ok(StreamClosureReason::PrivateAddr),
2636        _ => Err(Error::Protocol(format!(
2637            "unknown stream closure reason: {}",
2638            s
2639        ))),
2640    }
2641}
2642
2643/// Parses a stream source string into a [`StreamSource`] enum variant.
2644///
2645/// Converts a case-insensitive string representation of a stream source
2646/// from the Tor control protocol into the corresponding enum variant.
2647///
2648/// # Arguments
2649///
2650/// * `s` - The stream source string to parse (e.g., "CACHE", "EXIT")
2651///
2652/// # Returns
2653///
2654/// * `Ok(StreamSource)` - The parsed stream source variant
2655/// * `Err(Error::Protocol)` - If the string doesn't match any known source
2656///
2657/// # Supported Values
2658///
2659/// - `CACHE` - Data from cache
2660/// - `EXIT` - Data from exit node
2661fn parse_stream_source(s: &str) -> Result<StreamSource, Error> {
2662    match s.to_uppercase().as_str() {
2663        "CACHE" => Ok(StreamSource::Cache),
2664        "EXIT" => Ok(StreamSource::Exit),
2665        _ => Err(Error::Protocol(format!("unknown stream source: {}", s))),
2666    }
2667}
2668
2669/// Parses a stream purpose string into a [`StreamPurpose`] enum variant.
2670///
2671/// Converts a case-insensitive string representation of a stream purpose
2672/// from the Tor control protocol into the corresponding enum variant.
2673///
2674/// # Arguments
2675///
2676/// * `s` - The stream purpose string to parse (e.g., "USER", "DIR_FETCH")
2677///
2678/// # Returns
2679///
2680/// * `Ok(StreamPurpose)` - The parsed stream purpose variant
2681/// * `Err(Error::Protocol)` - If the string doesn't match any known purpose
2682///
2683/// # Supported Values
2684///
2685/// - `DIR_FETCH` - Directory fetch operation
2686/// - `DIR_UPLOAD` - Directory upload operation
2687/// - `DNS_REQUEST` - DNS resolution request
2688/// - `DIRPORT_TEST` - Directory port testing
2689/// - `USER` - User-initiated stream
2690fn parse_stream_purpose(s: &str) -> Result<StreamPurpose, Error> {
2691    match s.to_uppercase().as_str() {
2692        "DIR_FETCH" => Ok(StreamPurpose::DirFetch),
2693        "DIR_UPLOAD" => Ok(StreamPurpose::DirUpload),
2694        "DNS_REQUEST" => Ok(StreamPurpose::DnsRequest),
2695        "DIRPORT_TEST" => Ok(StreamPurpose::DirportTest),
2696        "USER" => Ok(StreamPurpose::User),
2697        _ => Err(Error::Protocol(format!("unknown stream purpose: {}", s))),
2698    }
2699}
2700
2701/// Parses an OR connection closure reason string into an [`OrClosureReason`] enum variant.
2702///
2703/// Converts a case-insensitive string representation of an OR connection
2704/// closure reason from the Tor control protocol into the corresponding enum variant.
2705///
2706/// # Arguments
2707///
2708/// * `s` - The OR closure reason string to parse (e.g., "DONE", "TIMEOUT")
2709///
2710/// # Returns
2711///
2712/// * `Ok(OrClosureReason)` - The parsed closure reason variant
2713/// * `Err(Error::Protocol)` - If the string doesn't match any known reason
2714///
2715/// # Supported Values
2716///
2717/// - `DONE` - Connection completed normally
2718/// - `CONNECTREFUSED` - Connection refused
2719/// - `IDENTITY` - Identity verification failed
2720/// - `CONNECTRESET` - Connection reset
2721/// - `TIMEOUT` - Connection timed out
2722/// - `NOROUTE` - No route to relay
2723/// - `IOERROR` - I/O error occurred
2724/// - `RESOURCELIMIT` - Resource limit reached
2725/// - `MISC` - Miscellaneous error
2726/// - `PT_MISSING` - Pluggable transport missing
2727fn parse_or_closure_reason(s: &str) -> Result<OrClosureReason, Error> {
2728    match s.to_uppercase().as_str() {
2729        "DONE" => Ok(OrClosureReason::Done),
2730        "CONNECTREFUSED" => Ok(OrClosureReason::ConnectRefused),
2731        "IDENTITY" => Ok(OrClosureReason::Identity),
2732        "CONNECTRESET" => Ok(OrClosureReason::ConnectReset),
2733        "TIMEOUT" => Ok(OrClosureReason::Timeout),
2734        "NOROUTE" => Ok(OrClosureReason::NoRoute),
2735        "IOERROR" => Ok(OrClosureReason::IoError),
2736        "RESOURCELIMIT" => Ok(OrClosureReason::ResourceLimit),
2737        "MISC" => Ok(OrClosureReason::Misc),
2738        "PT_MISSING" => Ok(OrClosureReason::PtMissing),
2739        _ => Err(Error::Protocol(format!("unknown OR closure reason: {}", s))),
2740    }
2741}
2742
2743/// Parses a comma-separated string of circuit build flags into a vector of [`CircBuildFlag`].
2744///
2745/// Converts a comma-separated string of circuit build flags from the Tor
2746/// control protocol into a vector of enum variants. Unknown flags are silently ignored.
2747///
2748/// # Arguments
2749///
2750/// * `s` - The comma-separated build flags string (e.g., "ONEHOP_TUNNEL,IS_INTERNAL")
2751///
2752/// # Returns
2753///
2754/// A vector of recognized [`CircBuildFlag`] variants. Unknown flags are filtered out.
2755///
2756/// # Supported Values
2757///
2758/// - `ONEHOP_TUNNEL` - Single-hop circuit (for directory connections)
2759/// - `IS_INTERNAL` - Internal circuit (not for user traffic)
2760/// - `NEED_CAPACITY` - Circuit needs high-capacity relays
2761/// - `NEED_UPTIME` - Circuit needs high-uptime relays
2762fn parse_build_flags(s: &str) -> Vec<CircBuildFlag> {
2763    s.split(',')
2764        .filter_map(|f| match f.to_uppercase().as_str() {
2765            "ONEHOP_TUNNEL" => Some(CircBuildFlag::OneHopTunnel),
2766            "IS_INTERNAL" => Some(CircBuildFlag::IsInternal),
2767            "NEED_CAPACITY" => Some(CircBuildFlag::NeedCapacity),
2768            "NEED_UPTIME" => Some(CircBuildFlag::NeedUptime),
2769            _ => None,
2770        })
2771        .collect()
2772}
2773
2774/// Parses a circuit path string into a vector of relay fingerprint and nickname pairs.
2775///
2776/// Converts a comma-separated circuit path string from the Tor control protocol
2777/// into a vector of tuples containing relay fingerprints and optional nicknames.
2778///
2779/// # Arguments
2780///
2781/// * `s` - The circuit path string (e.g., "$FP1~nick1,$FP2=nick2,$FP3")
2782///
2783/// # Returns
2784///
2785/// A vector of tuples where each tuple contains:
2786/// - The relay fingerprint (with leading `$` stripped)
2787/// - An optional nickname (if present after `~` or `=`)
2788///
2789/// # Format
2790///
2791/// Each relay in the path can be specified as:
2792/// - `$FINGERPRINT~nickname` - Fingerprint with nickname (tilde separator)
2793/// - `$FINGERPRINT=nickname` - Fingerprint with nickname (equals separator)
2794/// - `$FINGERPRINT` - Fingerprint only
2795/// - `FINGERPRINT` - Fingerprint without `$` prefix
2796fn parse_circuit_path(s: &str) -> Vec<(String, Option<String>)> {
2797    s.split(',')
2798        .map(|relay| {
2799            let relay = relay.trim_start_matches('$');
2800            if let Some((fp, nick)) = relay.split_once('~') {
2801                (fp.to_string(), Some(nick.to_string()))
2802            } else if let Some((fp, nick)) = relay.split_once('=') {
2803                (fp.to_string(), Some(nick.to_string()))
2804            } else {
2805                (relay.to_string(), None)
2806            }
2807        })
2808        .collect()
2809}
2810
2811/// Parses a relay endpoint string into a fingerprint and optional nickname.
2812///
2813/// Converts a relay endpoint string from the Tor control protocol into a tuple
2814/// containing the relay fingerprint and optional nickname.
2815///
2816/// # Arguments
2817///
2818/// * `s` - The relay endpoint string (e.g., "$FP~nickname" or "$FP=nickname")
2819///
2820/// # Returns
2821///
2822/// A tuple containing:
2823/// - The relay fingerprint (with leading `$` stripped)
2824/// - An optional nickname (if present after `~` or `=`)
2825///
2826/// # Format
2827///
2828/// The relay can be specified as:
2829/// - `$FINGERPRINT~nickname` - Fingerprint with nickname (tilde separator)
2830/// - `$FINGERPRINT=nickname` - Fingerprint with nickname (equals separator)
2831/// - `$FINGERPRINT` - Fingerprint only
2832/// - `FINGERPRINT` - Fingerprint without `$` prefix
2833fn parse_relay_endpoint(s: &str) -> (String, Option<String>) {
2834    let s = s.trim_start_matches('$');
2835    if let Some((fp, nick)) = s.split_once('~') {
2836        (fp.to_string(), Some(nick.to_string()))
2837    } else if let Some((fp, nick)) = s.split_once('=') {
2838        (fp.to_string(), Some(nick.to_string()))
2839    } else {
2840        (s.to_string(), None)
2841    }
2842}
2843
2844/// Parses a target address string into a host and port tuple.
2845///
2846/// Converts a target address string (host:port format) from the Tor control
2847/// protocol into a tuple containing the host and port number.
2848///
2849/// # Arguments
2850///
2851/// * `target` - The target address string (e.g., "example.com:80" or "[::1]:443")
2852///
2853/// # Returns
2854///
2855/// * `Ok((host, port))` - The parsed host string and port number
2856/// * `Err(Error::Protocol)` - If the port cannot be parsed as a valid u16
2857///
2858/// # Format
2859///
2860/// Supports both IPv4 and IPv6 addresses:
2861/// - `hostname:port` - Standard hostname with port
2862/// - `ip:port` - IPv4 address with port
2863/// - `[ipv6]:port` - IPv6 address with port (brackets preserved in host)
2864///
2865/// If no port is specified, returns port 0.
2866fn parse_target(target: &str) -> Result<(String, u16), Error> {
2867    if let Some(colon_pos) = target.rfind(':') {
2868        let host = target[..colon_pos].to_string();
2869        let port_str = &target[colon_pos + 1..];
2870        let port: u16 = port_str
2871            .parse()
2872            .map_err(|_| Error::Protocol(format!("invalid port: {}", port_str)))?;
2873        Ok((host, port))
2874    } else {
2875        Ok((target.to_string(), 0))
2876    }
2877}
2878
2879/// Parses an ISO 8601 timestamp string into a UTC [`DateTime`].
2880///
2881/// Converts a timestamp string in ISO 8601 format from the Tor control
2882/// protocol into a [`DateTime<Utc>`] value.
2883///
2884/// # Arguments
2885///
2886/// * `s` - The timestamp string (e.g., "2024-01-15 12:30:45" or "2024-01-15T12:30:45.123")
2887///
2888/// # Returns
2889///
2890/// * `Ok(DateTime<Utc>)` - The parsed UTC datetime
2891/// * `Err(Error::Protocol)` - If the timestamp format is invalid
2892///
2893/// # Supported Formats
2894///
2895/// - `YYYY-MM-DD HH:MM:SS` - Standard format
2896/// - `YYYY-MM-DDTHH:MM:SS` - ISO 8601 with T separator
2897/// - `YYYY-MM-DD HH:MM:SS.fff` - With fractional seconds
2898/// - `YYYY-MM-DDTHH:MM:SS.fff` - ISO 8601 with fractional seconds
2899fn parse_iso_timestamp(s: &str) -> Result<DateTime<Utc>, Error> {
2900    let s = s.replace('T', " ");
2901    let formats = ["%Y-%m-%d %H:%M:%S%.f", "%Y-%m-%d %H:%M:%S"];
2902    for fmt in &formats {
2903        if let Ok(dt) = chrono::NaiveDateTime::parse_from_str(&s, fmt) {
2904            return Ok(DateTime::from_naive_utc_and_offset(dt, Utc));
2905        }
2906    }
2907    Err(Error::Protocol(format!("invalid timestamp: {}", s)))
2908}
2909
2910/// Parses a local timestamp string into a local [`DateTime`].
2911///
2912/// Converts a timestamp string from the Tor control protocol into a
2913/// [`DateTime<Local>`] value using the system's local timezone offset.
2914///
2915/// # Arguments
2916///
2917/// * `s` - The timestamp string (e.g., "2024-01-15 12:30:45")
2918///
2919/// # Returns
2920///
2921/// * `Ok(DateTime<Local>)` - The parsed local datetime
2922/// * `Err(Error::Protocol)` - If the timestamp format is invalid
2923///
2924/// # Supported Formats
2925///
2926/// - `YYYY-MM-DD HH:MM:SS` - Standard format
2927/// - `YYYY-MM-DD HH:MM:SS.fff` - With fractional seconds
2928///
2929/// # Note
2930///
2931/// The timestamp is interpreted as being in the local timezone at the
2932/// time of parsing. The current local timezone offset is applied.
2933fn parse_local_timestamp(s: &str) -> Result<DateTime<Local>, Error> {
2934    let formats = ["%Y-%m-%d %H:%M:%S", "%Y-%m-%d %H:%M:%S%.f"];
2935    for fmt in &formats {
2936        if let Ok(dt) = chrono::NaiveDateTime::parse_from_str(s, fmt) {
2937            return Ok(DateTime::from_naive_utc_and_offset(
2938                dt,
2939                *Local::now().offset(),
2940            ));
2941        }
2942    }
2943    Err(Error::Protocol(format!("invalid local timestamp: {}", s)))
2944}
2945
2946/// Parses a UTC timestamp string into a UTC [`DateTime`].
2947///
2948/// This is an alias for [`parse_iso_timestamp`] that explicitly indicates
2949/// the timestamp should be interpreted as UTC.
2950///
2951/// # Arguments
2952///
2953/// * `s` - The timestamp string in ISO 8601 format
2954///
2955/// # Returns
2956///
2957/// * `Ok(DateTime<Utc>)` - The parsed UTC datetime
2958/// * `Err(Error::Protocol)` - If the timestamp format is invalid
2959///
2960/// # See Also
2961///
2962/// - [`parse_iso_timestamp`] - The underlying implementation
2963fn parse_utc_timestamp(s: &str) -> Result<DateTime<Utc>, Error> {
2964    parse_iso_timestamp(s)
2965}
2966
2967/// Enumeration of all parsed event types.
2968///
2969/// This enum provides a unified way to handle different event types
2970/// through pattern matching. Use [`ParsedEvent::parse`] to convert
2971/// raw event data into the appropriate variant.
2972///
2973/// # Parsing Events
2974///
2975/// Events are parsed from raw control protocol messages:
2976///
2977/// ```rust,ignore
2978/// use stem_rs::events::ParsedEvent;
2979///
2980/// let event = ParsedEvent::parse("BW", "1024 2048", None)?;
2981/// match event {
2982///     ParsedEvent::Bandwidth(bw) => {
2983///         println!("Read: {}, Written: {}", bw.read, bw.written);
2984///     }
2985///     _ => {}
2986/// }
2987/// ```
2988///
2989/// # Unknown Events
2990///
2991/// Events that don't match a known type are captured as
2992/// [`ParsedEvent::Unknown`], preserving the raw content for
2993/// debugging or custom handling.
2994///
2995/// # Display
2996///
2997/// All variants implement [`Display`](std::fmt::Display) to reconstruct
2998/// a human-readable representation of the event.
2999#[derive(Debug, Clone)]
3000pub enum ParsedEvent {
3001    /// Aggregate bandwidth event (BW).
3002    Bandwidth(BandwidthEvent),
3003    /// Log message event (DEBUG, INFO, NOTICE, WARN, ERR).
3004    Log(LogEvent),
3005    /// Circuit status change event (CIRC).
3006    Circuit(CircuitEvent),
3007    /// Stream status change event (STREAM).
3008    Stream(StreamEvent),
3009    /// OR connection status change event (ORCONN).
3010    OrConn(OrConnEvent),
3011    /// Address mapping event (ADDRMAP).
3012    AddrMap(AddrMapEvent),
3013    /// Circuit build timeout change event (BUILDTIMEOUT_SET).
3014    BuildTimeoutSet(BuildTimeoutSetEvent),
3015    /// Guard relay status change event (GUARD).
3016    Guard(GuardEvent),
3017    /// New descriptor available event (NEWDESC).
3018    NewDesc(NewDescEvent),
3019    /// Signal received event (SIGNAL).
3020    Signal(SignalEvent),
3021    /// Status event (STATUS_GENERAL, STATUS_CLIENT, STATUS_SERVER).
3022    Status(StatusEvent),
3023    /// Configuration changed event (CONF_CHANGED).
3024    ConfChanged(ConfChangedEvent),
3025    /// Network liveness event (NETWORK_LIVENESS).
3026    NetworkLiveness(NetworkLivenessEvent),
3027    /// Per-circuit bandwidth event (CIRC_BW).
3028    CircuitBandwidth(CircuitBandwidthEvent),
3029    /// Per-connection bandwidth event (CONN_BW).
3030    ConnectionBandwidth(ConnectionBandwidthEvent),
3031    /// Hidden service descriptor event (HS_DESC).
3032    HsDesc(HsDescEvent),
3033    /// Unknown or unrecognized event type.
3034    Unknown {
3035        /// The event type string.
3036        event_type: String,
3037        /// The raw event content.
3038        content: String,
3039    },
3040}
3041
3042impl ParsedEvent {
3043    /// Parses raw event data into a typed event.
3044    ///
3045    /// # Arguments
3046    ///
3047    /// * `event_type` - The event type keyword (e.g., "BW", "CIRC")
3048    /// * `content` - The event content after the type
3049    /// * `lines` - Optional multi-line content for events like CONF_CHANGED
3050    ///
3051    /// # Supported Event Types
3052    ///
3053    /// - `BW` - Bandwidth events
3054    /// - `DEBUG`, `INFO`, `NOTICE`, `WARN`, `ERR` - Log events
3055    /// - `CIRC` - Circuit events
3056    /// - `STREAM` - Stream events
3057    /// - `ORCONN` - OR connection events
3058    /// - `ADDRMAP` - Address map events
3059    /// - `BUILDTIMEOUT_SET` - Build timeout events
3060    /// - `GUARD` - Guard events
3061    /// - `NEWDESC` - New descriptor events
3062    /// - `SIGNAL` - Signal events
3063    /// - `STATUS_GENERAL`, `STATUS_CLIENT`, `STATUS_SERVER` - Status events
3064    /// - `CONF_CHANGED` - Configuration change events
3065    /// - `NETWORK_LIVENESS` - Network liveness events
3066    /// - `CIRC_BW` - Circuit bandwidth events
3067    /// - `CONN_BW` - Connection bandwidth events
3068    /// - `HS_DESC` - Hidden service descriptor events
3069    ///
3070    /// # Errors
3071    ///
3072    /// Returns [`Error::Protocol`] if the event content is malformed.
3073    /// Unknown event types are returned as [`ParsedEvent::Unknown`]
3074    /// rather than causing an error.
3075    ///
3076    /// # Example
3077    ///
3078    /// ```rust,ignore
3079    /// use stem_rs::events::ParsedEvent;
3080    ///
3081    /// // Parse a bandwidth event
3082    /// let event = ParsedEvent::parse("BW", "100 200", None)?;
3083    ///
3084    /// // Parse a circuit event
3085    /// let event = ParsedEvent::parse("CIRC", "1 BUILT $ABC...=relay", None)?;
3086    ///
3087    /// // Unknown events are captured, not rejected
3088    /// let event = ParsedEvent::parse("FUTURE_EVENT", "data", None)?;
3089    /// assert!(matches!(event, ParsedEvent::Unknown { .. }));
3090    /// ```
3091    pub fn parse(event_type: &str, content: &str, lines: Option<&[String]>) -> Result<Self, Error> {
3092        match event_type.to_uppercase().as_str() {
3093            "BW" => Ok(ParsedEvent::Bandwidth(BandwidthEvent::parse(content)?)),
3094            "DEBUG" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Debug, content)?)),
3095            "INFO" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Info, content)?)),
3096            "NOTICE" => Ok(ParsedEvent::Log(LogEvent::parse(
3097                Runlevel::Notice,
3098                content,
3099            )?)),
3100            "WARN" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Warn, content)?)),
3101            "ERR" => Ok(ParsedEvent::Log(LogEvent::parse(Runlevel::Err, content)?)),
3102            "CIRC" => Ok(ParsedEvent::Circuit(CircuitEvent::parse(content)?)),
3103            "STREAM" => Ok(ParsedEvent::Stream(StreamEvent::parse(content)?)),
3104            "ORCONN" => Ok(ParsedEvent::OrConn(OrConnEvent::parse(content)?)),
3105            "ADDRMAP" => Ok(ParsedEvent::AddrMap(AddrMapEvent::parse(content)?)),
3106            "BUILDTIMEOUT_SET" => Ok(ParsedEvent::BuildTimeoutSet(BuildTimeoutSetEvent::parse(
3107                content,
3108            )?)),
3109            "GUARD" => Ok(ParsedEvent::Guard(GuardEvent::parse(content)?)),
3110            "NEWDESC" => Ok(ParsedEvent::NewDesc(NewDescEvent::parse(content)?)),
3111            "SIGNAL" => Ok(ParsedEvent::Signal(SignalEvent::parse(content)?)),
3112            "STATUS_GENERAL" => Ok(ParsedEvent::Status(StatusEvent::parse(
3113                StatusType::General,
3114                content,
3115            )?)),
3116            "STATUS_CLIENT" => Ok(ParsedEvent::Status(StatusEvent::parse(
3117                StatusType::Client,
3118                content,
3119            )?)),
3120            "STATUS_SERVER" => Ok(ParsedEvent::Status(StatusEvent::parse(
3121                StatusType::Server,
3122                content,
3123            )?)),
3124            "CONF_CHANGED" => {
3125                let lines = lines.unwrap_or(&[]);
3126                Ok(ParsedEvent::ConfChanged(ConfChangedEvent::parse(lines)?))
3127            }
3128            "NETWORK_LIVENESS" => Ok(ParsedEvent::NetworkLiveness(NetworkLivenessEvent::parse(
3129                content,
3130            )?)),
3131            "CIRC_BW" => Ok(ParsedEvent::CircuitBandwidth(CircuitBandwidthEvent::parse(
3132                content,
3133            )?)),
3134            "CONN_BW" => Ok(ParsedEvent::ConnectionBandwidth(
3135                ConnectionBandwidthEvent::parse(content)?,
3136            )),
3137            "HS_DESC" => Ok(ParsedEvent::HsDesc(HsDescEvent::parse(content)?)),
3138            _ => Ok(ParsedEvent::Unknown {
3139                event_type: event_type.to_string(),
3140                content: content.to_string(),
3141            }),
3142        }
3143    }
3144
3145    /// Returns the event type string for this event.
3146    ///
3147    /// This returns the canonical event type keyword as used in
3148    /// `SETEVENTS` commands and event responses.
3149    ///
3150    /// # Example
3151    ///
3152    /// ```rust,ignore
3153    /// let event = ParsedEvent::parse("BW", "100 200", None)?;
3154    /// assert_eq!(event.event_type(), "BW");
3155    /// ```
3156    pub fn event_type(&self) -> &str {
3157        match self {
3158            ParsedEvent::Bandwidth(_) => "BW",
3159            ParsedEvent::Log(e) => match e.runlevel {
3160                Runlevel::Debug => "DEBUG",
3161                Runlevel::Info => "INFO",
3162                Runlevel::Notice => "NOTICE",
3163                Runlevel::Warn => "WARN",
3164                Runlevel::Err => "ERR",
3165            },
3166            ParsedEvent::Circuit(_) => "CIRC",
3167            ParsedEvent::Stream(_) => "STREAM",
3168            ParsedEvent::OrConn(_) => "ORCONN",
3169            ParsedEvent::AddrMap(_) => "ADDRMAP",
3170            ParsedEvent::BuildTimeoutSet(_) => "BUILDTIMEOUT_SET",
3171            ParsedEvent::Guard(_) => "GUARD",
3172            ParsedEvent::NewDesc(_) => "NEWDESC",
3173            ParsedEvent::Signal(_) => "SIGNAL",
3174            ParsedEvent::Status(e) => match e.status_type {
3175                StatusType::General => "STATUS_GENERAL",
3176                StatusType::Client => "STATUS_CLIENT",
3177                StatusType::Server => "STATUS_SERVER",
3178            },
3179            ParsedEvent::ConfChanged(_) => "CONF_CHANGED",
3180            ParsedEvent::NetworkLiveness(_) => "NETWORK_LIVENESS",
3181            ParsedEvent::CircuitBandwidth(_) => "CIRC_BW",
3182            ParsedEvent::ConnectionBandwidth(_) => "CONN_BW",
3183            ParsedEvent::HsDesc(_) => "HS_DESC",
3184            ParsedEvent::Unknown { event_type, .. } => event_type,
3185        }
3186    }
3187}
3188
3189impl std::fmt::Display for ParsedEvent {
3190    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3191        match self {
3192            ParsedEvent::Bandwidth(e) => write!(f, "650 BW {} {}", e.read, e.written),
3193            ParsedEvent::Log(e) => write!(f, "650 {} {}", e.runlevel, e.message),
3194            ParsedEvent::Circuit(e) => write!(f, "650 CIRC {} {}", e.id, e.status),
3195            ParsedEvent::Stream(e) => write!(f, "650 STREAM {} {}", e.id, e.status),
3196            ParsedEvent::OrConn(e) => write!(f, "650 ORCONN {} {}", e.target, e.status),
3197            ParsedEvent::AddrMap(e) => {
3198                write!(
3199                    f,
3200                    "650 ADDRMAP {} {}",
3201                    e.hostname,
3202                    e.destination.as_deref().unwrap_or("<error>")
3203                )
3204            }
3205            ParsedEvent::BuildTimeoutSet(e) => write!(f, "650 BUILDTIMEOUT_SET {:?}", e.set_type),
3206            ParsedEvent::Guard(e) => {
3207                write!(f, "650 GUARD {} {} {}", e.guard_type, e.endpoint, e.status)
3208            }
3209            ParsedEvent::NewDesc(e) => {
3210                let relays: Vec<String> = e
3211                    .relays
3212                    .iter()
3213                    .map(|(fp, nick)| match nick {
3214                        Some(n) => format!("{}~{}", fp, n),
3215                        None => fp.clone(),
3216                    })
3217                    .collect();
3218                write!(f, "650 NEWDESC {}", relays.join(" "))
3219            }
3220            ParsedEvent::Signal(e) => write!(f, "650 SIGNAL {}", e.signal),
3221            ParsedEvent::Status(e) => write!(
3222                f,
3223                "650 STATUS_{} {} {}",
3224                e.status_type, e.runlevel, e.action
3225            ),
3226            ParsedEvent::ConfChanged(e) => {
3227                let changes: Vec<String> = e
3228                    .changed
3229                    .iter()
3230                    .map(|(k, v)| format!("{}={}", k, v.join(",")))
3231                    .collect();
3232                write!(f, "650 CONF_CHANGED {}", changes.join(" "))
3233            }
3234            ParsedEvent::NetworkLiveness(e) => write!(f, "650 NETWORK_LIVENESS {}", e.status),
3235            ParsedEvent::CircuitBandwidth(e) => {
3236                write!(f, "650 CIRC_BW {} {} {}", e.id, e.read, e.written)
3237            }
3238            ParsedEvent::ConnectionBandwidth(e) => write!(
3239                f,
3240                "650 CONN_BW {} {} {} {}",
3241                e.id, e.conn_type, e.read, e.written
3242            ),
3243            ParsedEvent::HsDesc(e) => write!(f, "650 HS_DESC {} {}", e.action, e.address),
3244            ParsedEvent::Unknown {
3245                event_type,
3246                content,
3247            } => write!(f, "650 {} {}", event_type, content),
3248        }
3249    }
3250}
3251
3252#[cfg(test)]
3253mod tests {
3254    use super::*;
3255    use chrono::{Datelike, Timelike};
3256
3257    #[test]
3258    fn test_bandwidth_event() {
3259        let event = BandwidthEvent::parse("15 25").unwrap();
3260        assert_eq!(event.read, 15);
3261        assert_eq!(event.written, 25);
3262    }
3263
3264    #[test]
3265    fn test_bandwidth_event_zero() {
3266        let event = BandwidthEvent::parse("0 0").unwrap();
3267        assert_eq!(event.read, 0);
3268        assert_eq!(event.written, 0);
3269    }
3270
3271    #[test]
3272    fn test_bandwidth_event_invalid_missing_values() {
3273        assert!(BandwidthEvent::parse("").is_err());
3274        assert!(BandwidthEvent::parse("15").is_err());
3275    }
3276
3277    #[test]
3278    fn test_bandwidth_event_invalid_non_numeric() {
3279        assert!(BandwidthEvent::parse("x 25").is_err());
3280        assert!(BandwidthEvent::parse("15 y").is_err());
3281    }
3282
3283    #[test]
3284    fn test_log_event() {
3285        let event = LogEvent::parse(Runlevel::Debug, "test message").unwrap();
3286        assert_eq!(event.runlevel, Runlevel::Debug);
3287        assert_eq!(event.message, "test message");
3288    }
3289
3290    #[test]
3291    fn test_log_event_debug() {
3292        let event = LogEvent::parse(
3293            Runlevel::Debug,
3294            "connection_edge_process_relay_cell(): Got an extended cell! Yay.",
3295        )
3296        .unwrap();
3297        assert_eq!(event.runlevel, Runlevel::Debug);
3298        assert_eq!(
3299            event.message,
3300            "connection_edge_process_relay_cell(): Got an extended cell! Yay."
3301        );
3302    }
3303
3304    #[test]
3305    fn test_log_event_info() {
3306        let event = LogEvent::parse(
3307            Runlevel::Info,
3308            "circuit_finish_handshake(): Finished building circuit hop:",
3309        )
3310        .unwrap();
3311        assert_eq!(event.runlevel, Runlevel::Info);
3312    }
3313
3314    #[test]
3315    fn test_log_event_warn() {
3316        let event = LogEvent::parse(Runlevel::Warn, "a multi-line\nwarning message").unwrap();
3317        assert_eq!(event.runlevel, Runlevel::Warn);
3318        assert_eq!(event.message, "a multi-line\nwarning message");
3319    }
3320
3321    #[test]
3322    fn test_circuit_event_launched() {
3323        let content = "7 LAUNCHED BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL TIME_CREATED=2012-11-08T16:48:38.417238";
3324        let event = CircuitEvent::parse(content).unwrap();
3325        assert_eq!(event.id.0, "7");
3326        assert_eq!(event.status, CircStatus::Launched);
3327        assert!(event.path.is_empty());
3328        assert_eq!(event.build_flags, Some(vec![CircBuildFlag::NeedCapacity]));
3329        assert_eq!(event.purpose, Some(CircPurpose::General));
3330        assert!(event.created.is_some());
3331        assert_eq!(event.reason, None);
3332        assert_eq!(event.remote_reason, None);
3333        assert_eq!(event.socks_username, None);
3334        assert_eq!(event.socks_password, None);
3335    }
3336
3337    #[test]
3338    fn test_circuit_event_extended() {
3339        let content = "7 EXTENDED $999A226EBED397F331B612FE1E4CFAE5C1F201BA=piyaz BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL";
3340        let event = CircuitEvent::parse(content).unwrap();
3341        assert_eq!(event.id.0, "7");
3342        assert_eq!(event.status, CircStatus::Extended);
3343        assert_eq!(event.path.len(), 1);
3344        assert_eq!(event.path[0].0, "999A226EBED397F331B612FE1E4CFAE5C1F201BA");
3345        assert_eq!(event.path[0].1, Some("piyaz".to_string()));
3346    }
3347
3348    #[test]
3349    fn test_circuit_event_failed() {
3350        let content = "5 FAILED $E57A476CD4DFBD99B4EE52A100A58610AD6E80B9=ergebnisoffen BUILD_FLAGS=NEED_CAPACITY PURPOSE=GENERAL REASON=DESTROYED REMOTE_REASON=OR_CONN_CLOSED";
3351        let event = CircuitEvent::parse(content).unwrap();
3352        assert_eq!(event.id.0, "5");
3353        assert_eq!(event.status, CircStatus::Failed);
3354        assert_eq!(event.reason, Some(CircClosureReason::Destroyed));
3355        assert_eq!(event.remote_reason, Some(CircClosureReason::OrConnClosed));
3356    }
3357
3358    #[test]
3359    fn test_circuit_event_with_credentials() {
3360        let content = r#"7 LAUNCHED SOCKS_USERNAME="It's a me, Mario!" SOCKS_PASSWORD="your princess is in another castle""#;
3361        let event = CircuitEvent::parse(content).unwrap();
3362        assert_eq!(event.id.0, "7");
3363        assert_eq!(event.status, CircStatus::Launched);
3364        assert_eq!(event.socks_username, Some("It's a me, Mario!".to_string()));
3365        assert_eq!(
3366            event.socks_password,
3367            Some("your princess is in another castle".to_string())
3368        );
3369    }
3370
3371    #[test]
3372    fn test_circuit_event_launched_old_format() {
3373        let content = "4 LAUNCHED";
3374        let event = CircuitEvent::parse(content).unwrap();
3375        assert_eq!(event.id.0, "4");
3376        assert_eq!(event.status, CircStatus::Launched);
3377        assert!(event.path.is_empty());
3378        assert_eq!(event.build_flags, None);
3379        assert_eq!(event.purpose, None);
3380    }
3381
3382    #[test]
3383    fn test_circuit_event_extended_old_format() {
3384        let content = "$E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone";
3385        let event = CircuitEvent::parse(&format!("1 EXTENDED {}", content)).unwrap();
3386        assert_eq!(event.id.0, "1");
3387        assert_eq!(event.status, CircStatus::Extended);
3388    }
3389
3390    #[test]
3391    fn test_circuit_event_built_old_format() {
3392        let content =
3393            "1 BUILT $E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone,PrivacyRepublic14";
3394        let event = CircuitEvent::parse(content).unwrap();
3395        assert_eq!(event.id.0, "1");
3396        assert_eq!(event.status, CircStatus::Built);
3397    }
3398
3399    #[test]
3400    fn test_stream_event_new() {
3401        let content = "18 NEW 0 encrypted.google.com:443 SOURCE_ADDR=127.0.0.1:47849 PURPOSE=USER";
3402        let event = StreamEvent::parse(content).unwrap();
3403        assert_eq!(event.id.0, "18");
3404        assert_eq!(event.status, StreamStatus::New);
3405        assert_eq!(event.circuit_id, None);
3406        assert_eq!(event.target_host, "encrypted.google.com");
3407        assert_eq!(event.target_port, 443);
3408        assert_eq!(event.source_addr, Some("127.0.0.1:47849".to_string()));
3409        assert_eq!(event.purpose, Some(StreamPurpose::User));
3410    }
3411
3412    #[test]
3413    fn test_stream_event_sentconnect() {
3414        let content = "18 SENTCONNECT 26 encrypted.google.com:443";
3415        let event = StreamEvent::parse(content).unwrap();
3416        assert_eq!(event.id.0, "18");
3417        assert_eq!(event.status, StreamStatus::SentConnect);
3418        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3419        assert_eq!(event.target_host, "encrypted.google.com");
3420        assert_eq!(event.target_port, 443);
3421        assert_eq!(event.source_addr, None);
3422        assert_eq!(event.purpose, None);
3423    }
3424
3425    #[test]
3426    fn test_stream_event_remap() {
3427        let content = "18 REMAP 26 74.125.227.129:443 SOURCE=EXIT";
3428        let event = StreamEvent::parse(content).unwrap();
3429        assert_eq!(event.id.0, "18");
3430        assert_eq!(event.status, StreamStatus::Remap);
3431        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3432        assert_eq!(event.target_host, "74.125.227.129");
3433        assert_eq!(event.target_port, 443);
3434        assert_eq!(event.source, Some(StreamSource::Exit));
3435    }
3436
3437    #[test]
3438    fn test_stream_event_succeeded() {
3439        let content = "18 SUCCEEDED 26 74.125.227.129:443";
3440        let event = StreamEvent::parse(content).unwrap();
3441        assert_eq!(event.id.0, "18");
3442        assert_eq!(event.status, StreamStatus::Succeeded);
3443        assert_eq!(event.circuit_id, Some(CircuitId::new("26")));
3444        assert_eq!(event.target_host, "74.125.227.129");
3445        assert_eq!(event.target_port, 443);
3446    }
3447
3448    #[test]
3449    fn test_stream_event_closed() {
3450        let content = "21 CLOSED 26 74.125.227.129:443 REASON=CONNRESET";
3451        let event = StreamEvent::parse(content).unwrap();
3452        assert_eq!(event.status, StreamStatus::Closed);
3453        assert_eq!(event.reason, Some(StreamClosureReason::ConnReset));
3454    }
3455
3456    #[test]
3457    fn test_stream_event_closed_done() {
3458        let content = "25 CLOSED 26 199.7.52.72:80 REASON=DONE";
3459        let event = StreamEvent::parse(content).unwrap();
3460        assert_eq!(event.id.0, "25");
3461        assert_eq!(event.status, StreamStatus::Closed);
3462        assert_eq!(event.reason, Some(StreamClosureReason::Done));
3463    }
3464
3465    #[test]
3466    fn test_stream_event_dir_fetch() {
3467        let content = "14 NEW 0 176.28.51.238.$649F2D0ACF418F7CFC6539AB2257EB2D5297BAFA.exit:443 SOURCE_ADDR=(Tor_internal):0 PURPOSE=DIR_FETCH";
3468        let event = StreamEvent::parse(content).unwrap();
3469        assert_eq!(event.id.0, "14");
3470        assert_eq!(event.status, StreamStatus::New);
3471        assert_eq!(event.circuit_id, None);
3472        assert_eq!(
3473            event.target_host,
3474            "176.28.51.238.$649F2D0ACF418F7CFC6539AB2257EB2D5297BAFA.exit"
3475        );
3476        assert_eq!(event.target_port, 443);
3477        assert_eq!(event.source_addr, Some("(Tor_internal):0".to_string()));
3478        assert_eq!(event.purpose, Some(StreamPurpose::DirFetch));
3479    }
3480
3481    #[test]
3482    fn test_stream_event_dns_request() {
3483        let content = "1113 NEW 0 www.google.com:0 SOURCE_ADDR=127.0.0.1:15297 PURPOSE=DNS_REQUEST";
3484        let event = StreamEvent::parse(content).unwrap();
3485        assert_eq!(event.id.0, "1113");
3486        assert_eq!(event.status, StreamStatus::New);
3487        assert_eq!(event.target_host, "www.google.com");
3488        assert_eq!(event.target_port, 0);
3489        assert_eq!(event.purpose, Some(StreamPurpose::DnsRequest));
3490    }
3491
3492    #[test]
3493    fn test_orconn_event_closed() {
3494        let content = "$A1130635A0CDA6F60C276FBF6994EFBD4ECADAB1~tama CLOSED REASON=DONE";
3495        let event = OrConnEvent::parse(content).unwrap();
3496        assert_eq!(
3497            event.target,
3498            "$A1130635A0CDA6F60C276FBF6994EFBD4ECADAB1~tama"
3499        );
3500        assert_eq!(event.status, OrStatus::Closed);
3501        assert_eq!(event.reason, Some(OrClosureReason::Done));
3502        assert_eq!(event.num_circuits, None);
3503        assert_eq!(event.id, None);
3504    }
3505
3506    #[test]
3507    fn test_orconn_event_connected() {
3508        let content = "127.0.0.1:9000 CONNECTED NCIRCS=20 ID=18";
3509        let event = OrConnEvent::parse(content).unwrap();
3510        assert_eq!(event.target, "127.0.0.1:9000");
3511        assert_eq!(event.status, OrStatus::Connected);
3512        assert_eq!(event.num_circuits, Some(20));
3513        assert_eq!(event.id, Some("18".to_string()));
3514        assert_eq!(event.reason, None);
3515    }
3516
3517    #[test]
3518    fn test_orconn_event_launched() {
3519        let content = "$7ED90E2833EE38A75795BA9237B0A4560E51E1A0=GreenDragon LAUNCHED";
3520        let event = OrConnEvent::parse(content).unwrap();
3521        assert_eq!(
3522            event.target,
3523            "$7ED90E2833EE38A75795BA9237B0A4560E51E1A0=GreenDragon"
3524        );
3525        assert_eq!(event.status, OrStatus::Launched);
3526        assert_eq!(event.reason, None);
3527        assert_eq!(event.num_circuits, None);
3528    }
3529
3530    #[test]
3531    fn test_addrmap_event() {
3532        let content =
3533            r#"www.atagar.com 75.119.206.243 "2012-11-19 00:50:13" EXPIRES="2012-11-19 08:50:13""#;
3534        let event = AddrMapEvent::parse(content).unwrap();
3535        assert_eq!(event.hostname, "www.atagar.com");
3536        assert_eq!(event.destination, Some("75.119.206.243".to_string()));
3537        assert!(event.expiry.is_some());
3538        assert_eq!(event.error, None);
3539        assert!(event.utc_expiry.is_some());
3540    }
3541
3542    #[test]
3543    fn test_addrmap_event_no_expiration() {
3544        let content = "www.atagar.com 75.119.206.243 NEVER";
3545        let event = AddrMapEvent::parse(content).unwrap();
3546        assert_eq!(event.hostname, "www.atagar.com");
3547        assert_eq!(event.destination, Some("75.119.206.243".to_string()));
3548        assert_eq!(event.expiry, None);
3549        assert_eq!(event.utc_expiry, None);
3550    }
3551
3552    #[test]
3553    fn test_addrmap_event_error() {
3554        let content = r#"www.atagar.com <error> "2012-11-19 00:50:13" error=yes EXPIRES="2012-11-19 08:50:13""#;
3555        let event = AddrMapEvent::parse(content).unwrap();
3556        assert_eq!(event.hostname, "www.atagar.com");
3557        assert_eq!(event.destination, None);
3558        assert_eq!(event.error, Some("yes".to_string()));
3559    }
3560
3561    #[test]
3562    fn test_addrmap_event_cached_yes() {
3563        let content = r#"example.com 192.0.43.10 "2013-04-03 22:31:22" EXPIRES="2013-04-03 20:31:22" CACHED="YES""#;
3564        let event = AddrMapEvent::parse(content).unwrap();
3565        assert_eq!(event.hostname, "example.com");
3566        assert_eq!(event.cached, Some(true));
3567    }
3568
3569    #[test]
3570    fn test_addrmap_event_cached_no() {
3571        let content = r#"example.com 192.0.43.10 "2013-04-03 22:29:11" EXPIRES="2013-04-03 20:29:11" CACHED="NO""#;
3572        let event = AddrMapEvent::parse(content).unwrap();
3573        assert_eq!(event.hostname, "example.com");
3574        assert_eq!(event.cached, Some(false));
3575    }
3576
3577    #[test]
3578    fn test_build_timeout_set_event() {
3579        let content = "COMPUTED TOTAL_TIMES=124 TIMEOUT_MS=9019 XM=1375 ALPHA=0.855662 CUTOFF_QUANTILE=0.800000 TIMEOUT_RATE=0.137097 CLOSE_MS=21850 CLOSE_RATE=0.072581";
3580        let event = BuildTimeoutSetEvent::parse(content).unwrap();
3581        assert_eq!(event.set_type, TimeoutSetType::Computed);
3582        assert_eq!(event.total_times, Some(124));
3583        assert_eq!(event.timeout, Some(9019));
3584        assert_eq!(event.xm, Some(1375));
3585        assert!((event.alpha.unwrap() - 0.855662).abs() < 0.0001);
3586        assert!((event.quantile.unwrap() - 0.8).abs() < 0.0001);
3587        assert!((event.timeout_rate.unwrap() - 0.137097).abs() < 0.0001);
3588        assert_eq!(event.close_timeout, Some(21850));
3589        assert!((event.close_rate.unwrap() - 0.072581).abs() < 0.0001);
3590    }
3591
3592    #[test]
3593    fn test_build_timeout_set_event_invalid_total_times() {
3594        let content = "COMPUTED TOTAL_TIMES=one_twenty_four TIMEOUT_MS=9019";
3595        assert!(BuildTimeoutSetEvent::parse(content).is_err());
3596    }
3597
3598    #[test]
3599    fn test_build_timeout_set_event_invalid_quantile() {
3600        let content = "COMPUTED TOTAL_TIMES=124 CUTOFF_QUANTILE=zero_point_eight";
3601        assert!(BuildTimeoutSetEvent::parse(content).is_err());
3602    }
3603
3604    #[test]
3605    fn test_guard_event_new() {
3606        let content = "ENTRY $36B5DBA788246E8369DBAF58577C6BC044A9A374 NEW";
3607        let event = GuardEvent::parse(content).unwrap();
3608        assert_eq!(event.guard_type, GuardType::Entry);
3609        assert_eq!(event.endpoint, "$36B5DBA788246E8369DBAF58577C6BC044A9A374");
3610        assert_eq!(
3611            event.endpoint_fingerprint,
3612            "36B5DBA788246E8369DBAF58577C6BC044A9A374"
3613        );
3614        assert_eq!(event.endpoint_nickname, None);
3615        assert_eq!(event.status, GuardStatus::New);
3616    }
3617
3618    #[test]
3619    fn test_guard_event_good() {
3620        let content = "ENTRY $5D0034A368E0ABAF663D21847E1C9B6CFA09752A GOOD";
3621        let event = GuardEvent::parse(content).unwrap();
3622        assert_eq!(event.guard_type, GuardType::Entry);
3623        assert_eq!(
3624            event.endpoint_fingerprint,
3625            "5D0034A368E0ABAF663D21847E1C9B6CFA09752A"
3626        );
3627        assert_eq!(event.endpoint_nickname, None);
3628        assert_eq!(event.status, GuardStatus::Good);
3629    }
3630
3631    #[test]
3632    fn test_guard_event_bad() {
3633        let content = "ENTRY $5D0034A368E0ABAF663D21847E1C9B6CFA09752A=caerSidi BAD";
3634        let event = GuardEvent::parse(content).unwrap();
3635        assert_eq!(
3636            event.endpoint_fingerprint,
3637            "5D0034A368E0ABAF663D21847E1C9B6CFA09752A"
3638        );
3639        assert_eq!(event.endpoint_nickname, Some("caerSidi".to_string()));
3640        assert_eq!(event.status, GuardStatus::Bad);
3641    }
3642
3643    #[test]
3644    fn test_newdesc_event_single() {
3645        let content = "$B3FA3110CC6F42443F039220C134CBD2FC4F0493=Sakura";
3646        let event = NewDescEvent::parse(content).unwrap();
3647        assert_eq!(event.relays.len(), 1);
3648        assert_eq!(
3649            event.relays[0].0,
3650            "B3FA3110CC6F42443F039220C134CBD2FC4F0493"
3651        );
3652        assert_eq!(event.relays[0].1, Some("Sakura".to_string()));
3653    }
3654
3655    #[test]
3656    fn test_newdesc_event_multiple() {
3657        let content = "$BE938957B2CA5F804B3AFC2C1EE6673170CDBBF8=Moonshine $B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF~Unnamed";
3658        let event = NewDescEvent::parse(content).unwrap();
3659        assert_eq!(event.relays.len(), 2);
3660        assert_eq!(
3661            event.relays[0].0,
3662            "BE938957B2CA5F804B3AFC2C1EE6673170CDBBF8"
3663        );
3664        assert_eq!(event.relays[0].1, Some("Moonshine".to_string()));
3665        assert_eq!(
3666            event.relays[1].0,
3667            "B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF"
3668        );
3669        assert_eq!(event.relays[1].1, Some("Unnamed".to_string()));
3670    }
3671
3672    #[test]
3673    fn test_signal_event() {
3674        let event = SignalEvent::parse("DEBUG").unwrap();
3675        assert_eq!(event.signal, Signal::Debug);
3676
3677        let event = SignalEvent::parse("DUMP").unwrap();
3678        assert_eq!(event.signal, Signal::Dump);
3679    }
3680
3681    #[test]
3682    fn test_signal_event_all_signals() {
3683        assert_eq!(SignalEvent::parse("RELOAD").unwrap().signal, Signal::Reload);
3684        assert_eq!(SignalEvent::parse("HUP").unwrap().signal, Signal::Reload);
3685        assert_eq!(
3686            SignalEvent::parse("SHUTDOWN").unwrap().signal,
3687            Signal::Shutdown
3688        );
3689        assert_eq!(SignalEvent::parse("INT").unwrap().signal, Signal::Shutdown);
3690        assert_eq!(SignalEvent::parse("DUMP").unwrap().signal, Signal::Dump);
3691        assert_eq!(SignalEvent::parse("USR1").unwrap().signal, Signal::Dump);
3692        assert_eq!(SignalEvent::parse("DEBUG").unwrap().signal, Signal::Debug);
3693        assert_eq!(SignalEvent::parse("USR2").unwrap().signal, Signal::Debug);
3694        assert_eq!(SignalEvent::parse("HALT").unwrap().signal, Signal::Halt);
3695        assert_eq!(SignalEvent::parse("TERM").unwrap().signal, Signal::Halt);
3696        assert_eq!(SignalEvent::parse("NEWNYM").unwrap().signal, Signal::Newnym);
3697        assert_eq!(
3698            SignalEvent::parse("CLEARDNSCACHE").unwrap().signal,
3699            Signal::ClearDnsCache
3700        );
3701        assert_eq!(
3702            SignalEvent::parse("HEARTBEAT").unwrap().signal,
3703            Signal::Heartbeat
3704        );
3705        assert_eq!(SignalEvent::parse("ACTIVE").unwrap().signal, Signal::Active);
3706        assert_eq!(
3707            SignalEvent::parse("DORMANT").unwrap().signal,
3708            Signal::Dormant
3709        );
3710    }
3711
3712    #[test]
3713    fn test_status_event() {
3714        let content = "NOTICE CONSENSUS_ARRIVED";
3715        let event = StatusEvent::parse(StatusType::General, content).unwrap();
3716        assert_eq!(event.status_type, StatusType::General);
3717        assert_eq!(event.runlevel, Runlevel::Notice);
3718        assert_eq!(event.action, "CONSENSUS_ARRIVED");
3719    }
3720
3721    #[test]
3722    fn test_status_event_enough_dir_info() {
3723        let content = "NOTICE ENOUGH_DIR_INFO";
3724        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3725        assert_eq!(event.status_type, StatusType::Client);
3726        assert_eq!(event.runlevel, Runlevel::Notice);
3727        assert_eq!(event.action, "ENOUGH_DIR_INFO");
3728    }
3729
3730    #[test]
3731    fn test_status_event_circuit_established() {
3732        let content = "NOTICE CIRCUIT_ESTABLISHED";
3733        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3734        assert_eq!(event.status_type, StatusType::Client);
3735        assert_eq!(event.runlevel, Runlevel::Notice);
3736        assert_eq!(event.action, "CIRCUIT_ESTABLISHED");
3737    }
3738
3739    #[test]
3740    fn test_status_event_with_args() {
3741        let content = "NOTICE BOOTSTRAP PROGRESS=53 TAG=loading_descriptors SUMMARY=\"Loading relay descriptors\"";
3742        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3743        assert_eq!(event.status_type, StatusType::Client);
3744        assert_eq!(event.action, "BOOTSTRAP");
3745        assert_eq!(event.arguments.get("PROGRESS"), Some(&"53".to_string()));
3746        assert_eq!(
3747            event.arguments.get("TAG"),
3748            Some(&"loading_descriptors".to_string())
3749        );
3750        assert_eq!(
3751            event.arguments.get("SUMMARY"),
3752            Some(&"Loading relay descriptors".to_string())
3753        );
3754    }
3755
3756    #[test]
3757    fn test_status_event_bootstrap_stuck() {
3758        let content = "WARN BOOTSTRAP PROGRESS=80 TAG=conn_or SUMMARY=\"Connecting to the Tor network\" WARNING=\"Network is unreachable\" REASON=NOROUTE COUNT=5 RECOMMENDATION=warn";
3759        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3760        assert_eq!(event.status_type, StatusType::Client);
3761        assert_eq!(event.runlevel, Runlevel::Warn);
3762        assert_eq!(event.action, "BOOTSTRAP");
3763        assert_eq!(event.arguments.get("PROGRESS"), Some(&"80".to_string()));
3764        assert_eq!(event.arguments.get("TAG"), Some(&"conn_or".to_string()));
3765        assert_eq!(
3766            event.arguments.get("WARNING"),
3767            Some(&"Network is unreachable".to_string())
3768        );
3769        assert_eq!(event.arguments.get("REASON"), Some(&"NOROUTE".to_string()));
3770        assert_eq!(event.arguments.get("COUNT"), Some(&"5".to_string()));
3771        assert_eq!(
3772            event.arguments.get("RECOMMENDATION"),
3773            Some(&"warn".to_string())
3774        );
3775    }
3776
3777    #[test]
3778    fn test_status_event_bootstrap_done() {
3779        let content = "NOTICE BOOTSTRAP PROGRESS=100 TAG=done SUMMARY=\"Done\"";
3780        let event = StatusEvent::parse(StatusType::Client, content).unwrap();
3781        assert_eq!(event.arguments.get("PROGRESS"), Some(&"100".to_string()));
3782        assert_eq!(event.arguments.get("TAG"), Some(&"done".to_string()));
3783        assert_eq!(event.arguments.get("SUMMARY"), Some(&"Done".to_string()));
3784    }
3785
3786    #[test]
3787    fn test_status_event_server_check_reachability() {
3788        let content = "NOTICE CHECKING_REACHABILITY ORADDRESS=71.35.143.230:9050";
3789        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3790        assert_eq!(event.status_type, StatusType::Server);
3791        assert_eq!(event.runlevel, Runlevel::Notice);
3792        assert_eq!(event.action, "CHECKING_REACHABILITY");
3793        assert_eq!(
3794            event.arguments.get("ORADDRESS"),
3795            Some(&"71.35.143.230:9050".to_string())
3796        );
3797    }
3798
3799    #[test]
3800    fn test_status_event_dns_timeout() {
3801        let content =
3802            "NOTICE NAMESERVER_STATUS NS=205.171.3.25 STATUS=DOWN ERR=\"request timed out.\"";
3803        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3804        assert_eq!(event.action, "NAMESERVER_STATUS");
3805        assert_eq!(event.arguments.get("NS"), Some(&"205.171.3.25".to_string()));
3806        assert_eq!(event.arguments.get("STATUS"), Some(&"DOWN".to_string()));
3807        assert_eq!(
3808            event.arguments.get("ERR"),
3809            Some(&"request timed out.".to_string())
3810        );
3811    }
3812
3813    #[test]
3814    fn test_status_event_dns_down() {
3815        let content = "WARN NAMESERVER_ALL_DOWN";
3816        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3817        assert_eq!(event.status_type, StatusType::Server);
3818        assert_eq!(event.runlevel, Runlevel::Warn);
3819        assert_eq!(event.action, "NAMESERVER_ALL_DOWN");
3820    }
3821
3822    #[test]
3823    fn test_status_event_dns_up() {
3824        let content = "NOTICE NAMESERVER_STATUS NS=205.171.3.25 STATUS=UP";
3825        let event = StatusEvent::parse(StatusType::Server, content).unwrap();
3826        assert_eq!(event.action, "NAMESERVER_STATUS");
3827        assert_eq!(event.arguments.get("STATUS"), Some(&"UP".to_string()));
3828    }
3829
3830    #[test]
3831    fn test_conf_changed_event() {
3832        let lines = vec![
3833            "ExitNodes=caerSidi".to_string(),
3834            "ExitPolicy".to_string(),
3835            "MaxCircuitDirtiness=20".to_string(),
3836        ];
3837        let event = ConfChangedEvent::parse(&lines).unwrap();
3838        assert_eq!(
3839            event.changed.get("ExitNodes"),
3840            Some(&vec!["caerSidi".to_string()])
3841        );
3842        assert_eq!(
3843            event.changed.get("MaxCircuitDirtiness"),
3844            Some(&vec!["20".to_string()])
3845        );
3846        assert_eq!(event.unset, vec!["ExitPolicy".to_string()]);
3847    }
3848
3849    #[test]
3850    fn test_conf_changed_event_multiple_values() {
3851        let lines = vec![
3852            "ExitPolicy=accept 34.3.4.5".to_string(),
3853            "ExitPolicy=accept 3.4.53.3".to_string(),
3854            "MaxCircuitDirtiness=20".to_string(),
3855        ];
3856        let event = ConfChangedEvent::parse(&lines).unwrap();
3857        assert_eq!(
3858            event.changed.get("ExitPolicy"),
3859            Some(&vec![
3860                "accept 34.3.4.5".to_string(),
3861                "accept 3.4.53.3".to_string()
3862            ])
3863        );
3864        assert_eq!(
3865            event.changed.get("MaxCircuitDirtiness"),
3866            Some(&vec!["20".to_string()])
3867        );
3868        assert!(event.unset.is_empty());
3869    }
3870
3871    #[test]
3872    fn test_network_liveness_event() {
3873        let event = NetworkLivenessEvent::parse("UP").unwrap();
3874        assert_eq!(event.status, "UP");
3875
3876        let event = NetworkLivenessEvent::parse("DOWN").unwrap();
3877        assert_eq!(event.status, "DOWN");
3878    }
3879
3880    #[test]
3881    fn test_network_liveness_event_other_status() {
3882        let event = NetworkLivenessEvent::parse("OTHER_STATUS key=value").unwrap();
3883        assert_eq!(event.status, "OTHER_STATUS");
3884    }
3885
3886    #[test]
3887    fn test_circuit_bandwidth_event() {
3888        let content = "ID=11 READ=272 WRITTEN=817";
3889        let event = CircuitBandwidthEvent::parse(content).unwrap();
3890        assert_eq!(event.id.0, "11");
3891        assert_eq!(event.read, 272);
3892        assert_eq!(event.written, 817);
3893        assert_eq!(event.time, None);
3894    }
3895
3896    #[test]
3897    fn test_circuit_bandwidth_event_with_time() {
3898        let content = "ID=11 READ=272 WRITTEN=817 TIME=2012-12-06T13:51:11.433755";
3899        let event = CircuitBandwidthEvent::parse(content).unwrap();
3900        assert_eq!(event.id.0, "11");
3901        assert!(event.time.is_some());
3902    }
3903
3904    #[test]
3905    fn test_circuit_bandwidth_event_invalid_written() {
3906        let content = "ID=11 READ=272 WRITTEN=817.7";
3907        assert!(CircuitBandwidthEvent::parse(content).is_err());
3908    }
3909
3910    #[test]
3911    fn test_circuit_bandwidth_event_missing_id() {
3912        let content = "READ=272 WRITTEN=817";
3913        assert!(CircuitBandwidthEvent::parse(content).is_err());
3914    }
3915
3916    #[test]
3917    fn test_connection_bandwidth_event() {
3918        let content = "ID=11 TYPE=DIR READ=272 WRITTEN=817";
3919        let event = ConnectionBandwidthEvent::parse(content).unwrap();
3920        assert_eq!(event.id, "11");
3921        assert_eq!(event.conn_type, ConnectionType::Dir);
3922        assert_eq!(event.read, 272);
3923        assert_eq!(event.written, 817);
3924    }
3925
3926    #[test]
3927    fn test_connection_bandwidth_event_invalid_written() {
3928        let content = "ID=11 TYPE=DIR READ=272 WRITTEN=817.7";
3929        assert!(ConnectionBandwidthEvent::parse(content).is_err());
3930    }
3931
3932    #[test]
3933    fn test_connection_bandwidth_event_missing_id() {
3934        let content = "TYPE=DIR READ=272 WRITTEN=817";
3935        assert!(ConnectionBandwidthEvent::parse(content).is_err());
3936    }
3937
3938    #[test]
3939    fn test_hs_desc_event() {
3940        let content = "REQUESTED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243=europa1 b3oeducbhjmbqmgw2i3jtz4fekkrinwj";
3941        let event = HsDescEvent::parse(content).unwrap();
3942        assert_eq!(event.action, HsDescAction::Requested);
3943        assert_eq!(event.address, "ajhb7kljbiru65qo");
3944        assert_eq!(event.authentication, Some(HsAuth::NoAuth));
3945        assert_eq!(
3946            event.directory,
3947            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243=europa1".to_string())
3948        );
3949        assert_eq!(
3950            event.directory_fingerprint,
3951            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
3952        );
3953        assert_eq!(event.directory_nickname, Some("europa1".to_string()));
3954        assert_eq!(
3955            event.descriptor_id,
3956            Some("b3oeducbhjmbqmgw2i3jtz4fekkrinwj".to_string())
3957        );
3958        assert_eq!(event.reason, None);
3959    }
3960
3961    #[test]
3962    fn test_hs_desc_event_no_desc_id() {
3963        let content =
3964            "REQUESTED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243";
3965        let event = HsDescEvent::parse(content).unwrap();
3966        assert_eq!(
3967            event.directory,
3968            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
3969        );
3970        assert_eq!(
3971            event.directory_fingerprint,
3972            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
3973        );
3974        assert_eq!(event.directory_nickname, None);
3975        assert_eq!(event.descriptor_id, None);
3976        assert_eq!(event.reason, None);
3977    }
3978
3979    #[test]
3980    fn test_hs_desc_event_not_found() {
3981        let content = "REQUESTED ajhb7kljbiru65qo NO_AUTH UNKNOWN";
3982        let event = HsDescEvent::parse(content).unwrap();
3983        assert_eq!(event.directory, None);
3984        assert_eq!(event.directory_fingerprint, None);
3985        assert_eq!(event.directory_nickname, None);
3986        assert_eq!(event.descriptor_id, None);
3987        assert_eq!(event.reason, None);
3988    }
3989
3990    #[test]
3991    fn test_hs_desc_event_failed() {
3992        let content = "FAILED ajhb7kljbiru65qo NO_AUTH $67B2BDA4264D8A189D9270E28B1D30A262838243 b3oeducbhjmbqmgw2i3jtz4fekkrinwj REASON=NOT_FOUND";
3993        let event = HsDescEvent::parse(content).unwrap();
3994        assert_eq!(event.action, HsDescAction::Failed);
3995        assert_eq!(event.address, "ajhb7kljbiru65qo");
3996        assert_eq!(event.authentication, Some(HsAuth::NoAuth));
3997        assert_eq!(
3998            event.directory,
3999            Some("$67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4000        );
4001        assert_eq!(
4002            event.directory_fingerprint,
4003            Some("67B2BDA4264D8A189D9270E28B1D30A262838243".to_string())
4004        );
4005        assert_eq!(event.directory_nickname, None);
4006        assert_eq!(
4007            event.descriptor_id,
4008            Some("b3oeducbhjmbqmgw2i3jtz4fekkrinwj".to_string())
4009        );
4010        assert_eq!(event.reason, Some(HsDescReason::NotFound));
4011    }
4012
4013    #[test]
4014    fn test_parsed_event_dispatch() {
4015        let event = ParsedEvent::parse("BW", "100 200", None).unwrap();
4016        match event {
4017            ParsedEvent::Bandwidth(bw) => {
4018                assert_eq!(bw.read, 100);
4019                assert_eq!(bw.written, 200);
4020            }
4021            _ => panic!("expected bandwidth event"),
4022        }
4023
4024        let event = ParsedEvent::parse("CIRC", "1 BUILT", None).unwrap();
4025        match event {
4026            ParsedEvent::Circuit(circ) => {
4027                assert_eq!(circ.id.0, "1");
4028                assert_eq!(circ.status, CircStatus::Built);
4029            }
4030            _ => panic!("expected circuit event"),
4031        }
4032    }
4033
4034    #[test]
4035    fn test_parsed_event_log_events() {
4036        let event = ParsedEvent::parse("DEBUG", "test debug message", None).unwrap();
4037        match event {
4038            ParsedEvent::Log(log) => {
4039                assert_eq!(log.runlevel, Runlevel::Debug);
4040                assert_eq!(log.message, "test debug message");
4041            }
4042            _ => panic!("expected log event"),
4043        }
4044
4045        let event = ParsedEvent::parse("INFO", "test info message", None).unwrap();
4046        match event {
4047            ParsedEvent::Log(log) => {
4048                assert_eq!(log.runlevel, Runlevel::Info);
4049            }
4050            _ => panic!("expected log event"),
4051        }
4052
4053        let event = ParsedEvent::parse("NOTICE", "test notice message", None).unwrap();
4054        match event {
4055            ParsedEvent::Log(log) => {
4056                assert_eq!(log.runlevel, Runlevel::Notice);
4057            }
4058            _ => panic!("expected log event"),
4059        }
4060
4061        let event = ParsedEvent::parse("WARN", "test warn message", None).unwrap();
4062        match event {
4063            ParsedEvent::Log(log) => {
4064                assert_eq!(log.runlevel, Runlevel::Warn);
4065            }
4066            _ => panic!("expected log event"),
4067        }
4068
4069        let event = ParsedEvent::parse("ERR", "test error message", None).unwrap();
4070        match event {
4071            ParsedEvent::Log(log) => {
4072                assert_eq!(log.runlevel, Runlevel::Err);
4073            }
4074            _ => panic!("expected log event"),
4075        }
4076    }
4077
4078    #[test]
4079    fn test_parsed_event_status_events() {
4080        let event = ParsedEvent::parse("STATUS_GENERAL", "NOTICE CONSENSUS_ARRIVED", None).unwrap();
4081        match event {
4082            ParsedEvent::Status(status) => {
4083                assert_eq!(status.status_type, StatusType::General);
4084                assert_eq!(status.action, "CONSENSUS_ARRIVED");
4085            }
4086            _ => panic!("expected status event"),
4087        }
4088
4089        let event = ParsedEvent::parse("STATUS_CLIENT", "NOTICE ENOUGH_DIR_INFO", None).unwrap();
4090        match event {
4091            ParsedEvent::Status(status) => {
4092                assert_eq!(status.status_type, StatusType::Client);
4093            }
4094            _ => panic!("expected status event"),
4095        }
4096
4097        let event = ParsedEvent::parse(
4098            "STATUS_SERVER",
4099            "NOTICE CHECKING_REACHABILITY ORADDRESS=127.0.0.1:9050",
4100            None,
4101        )
4102        .unwrap();
4103        match event {
4104            ParsedEvent::Status(status) => {
4105                assert_eq!(status.status_type, StatusType::Server);
4106            }
4107            _ => panic!("expected status event"),
4108        }
4109    }
4110
4111    #[test]
4112    fn test_parsed_event_unknown() {
4113        let event = ParsedEvent::parse("UNKNOWN_EVENT", "some content", None).unwrap();
4114        match event {
4115            ParsedEvent::Unknown {
4116                event_type,
4117                content,
4118            } => {
4119                assert_eq!(event_type, "UNKNOWN_EVENT");
4120                assert_eq!(content, "some content");
4121            }
4122            _ => panic!("expected unknown event"),
4123        }
4124    }
4125
4126    #[test]
4127    fn test_parse_circuit_path() {
4128        let path = parse_circuit_path("$999A226EBED397F331B612FE1E4CFAE5C1F201BA=piyaz");
4129        assert_eq!(path.len(), 1);
4130        assert_eq!(path[0].0, "999A226EBED397F331B612FE1E4CFAE5C1F201BA");
4131        assert_eq!(path[0].1, Some("piyaz".to_string()));
4132
4133        let path = parse_circuit_path(
4134            "$E57A476CD4DFBD99B4EE52A100A58610AD6E80B9,hamburgerphone,PrivacyRepublic14",
4135        );
4136        assert_eq!(path.len(), 3);
4137    }
4138
4139    #[test]
4140    fn test_parse_relay_endpoint() {
4141        let (fp, nick) = parse_relay_endpoint("$36B5DBA788246E8369DBAF58577C6BC044A9A374");
4142        assert_eq!(fp, "36B5DBA788246E8369DBAF58577C6BC044A9A374");
4143        assert_eq!(nick, None);
4144
4145        let (fp, nick) = parse_relay_endpoint("$5D0034A368E0ABAF663D21847E1C9B6CFA09752A=caerSidi");
4146        assert_eq!(fp, "5D0034A368E0ABAF663D21847E1C9B6CFA09752A");
4147        assert_eq!(nick, Some("caerSidi".to_string()));
4148
4149        let (fp, nick) = parse_relay_endpoint("$B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF~Unnamed");
4150        assert_eq!(fp, "B4BE08B22D4D2923EDC3970FD1B93D0448C6D8FF");
4151        assert_eq!(nick, Some("Unnamed".to_string()));
4152    }
4153
4154    #[test]
4155    fn test_parse_target() {
4156        let (host, port) = parse_target("encrypted.google.com:443").unwrap();
4157        assert_eq!(host, "encrypted.google.com");
4158        assert_eq!(port, 443);
4159
4160        let (host, port) = parse_target("74.125.227.129:443").unwrap();
4161        assert_eq!(host, "74.125.227.129");
4162        assert_eq!(port, 443);
4163
4164        let (host, port) = parse_target("www.google.com:0").unwrap();
4165        assert_eq!(host, "www.google.com");
4166        assert_eq!(port, 0);
4167    }
4168
4169    #[test]
4170    fn test_parse_iso_timestamp() {
4171        let dt = parse_iso_timestamp("2012-11-08T16:48:38.417238").unwrap();
4172        assert_eq!(dt.year(), 2012);
4173        assert_eq!(dt.month(), 11);
4174        assert_eq!(dt.day(), 8);
4175        assert_eq!(dt.hour(), 16);
4176        assert_eq!(dt.minute(), 48);
4177        assert_eq!(dt.second(), 38);
4178
4179        let dt = parse_iso_timestamp("2012-12-06T13:51:11.433755").unwrap();
4180        assert_eq!(dt.year(), 2012);
4181        assert_eq!(dt.month(), 12);
4182        assert_eq!(dt.day(), 6);
4183    }
4184
4185    #[test]
4186    fn test_parse_build_flags() {
4187        let flags = parse_build_flags("NEED_CAPACITY");
4188        assert_eq!(flags, vec![CircBuildFlag::NeedCapacity]);
4189
4190        let flags = parse_build_flags("IS_INTERNAL,NEED_CAPACITY");
4191        assert_eq!(
4192            flags,
4193            vec![CircBuildFlag::IsInternal, CircBuildFlag::NeedCapacity]
4194        );
4195
4196        let flags = parse_build_flags("ONEHOP_TUNNEL,IS_INTERNAL,NEED_CAPACITY,NEED_UPTIME");
4197        assert_eq!(
4198            flags,
4199            vec![
4200                CircBuildFlag::OneHopTunnel,
4201                CircBuildFlag::IsInternal,
4202                CircBuildFlag::NeedCapacity,
4203                CircBuildFlag::NeedUptime
4204            ]
4205        );
4206    }
4207}